© Wolfgang Heidrich

Rasterization

Fragment Processing

© Wolfgang Heidrich

e is more flexible:

o Programmable ‘vertex shaders” replace several
geometry processing stages

» Programmable “fragment/pixel shaders” replace
texture mapping stage

» Hardware with these features now called ‘Graphics
Processing Unit” (GPU)

© Wolfgang Heidrich

yourself

+ But can also implement
much more
Fragment/pixel shader
. Replaces texture
mapping
° Fragment shader must do
texturing

° But can do other things

© Wolfgang Heidrich

Vertex Shader Motivation
Hardware “transform&lighting:

> |.e. hardware geometry processing

> Was mandated by need for higher performance in
the late 90s

* Previously, geometry processing was done on CPU,
except for very high end machines

> Downside: now limited functionality due to fixed
function hardware

© Wolfgang Heidrich

Vertex Shaders
Programmability required for more
complicated effects
+ The tasks that come before transformation vary
widely
> Putting every possible lighting equation in hardware
is impractical

° Implementing programmable hardware has
advantages over CPU implementations

— Better performance due to massively parallel
implementations

— Lower bandwidth requirements (geometry can
be cached on GPU)

© Wolfgang Heidrich

* Access to read/write registers for temporary results

— Value is reset for every vertex

— lLe. cannot pass information from one vertex to the next
Access to read-only registers

— Global variables, like ligt position, transformation matrices
Write output to a specific register for the resulting color

© Wolfgang Heidrich

Vertex Shader

I

}
up to 128 instructions

l

Figure 2: The inputs and outputs of vertex shaders. Arrows indicate read-only, write-only, or
read-write.

© Wolfgang Heidrich

= Points, vectors, and colors!
> Replace all of
— Model/View Transformation
— Lighting
— Perspective projection

© Wolfgang Heidrich

— Vertex attributes that change per vertex:
= position, color, texture coordinates...

— Registers that are constant for all vertices
(changes are expensive):

= Matrices, light position and color, ...
— Temporary registers
— Output registers for position, color, tex coords...

© Wolfgang Heidrich

Vertex Programs —
Instruction Set

Arithmetic Operations on 4-vectors:
> ADD, MUL, MAD, MIN, MAX, DP3, DP4
Operations on Scalars

+ RCP (1/x), RSQ (1Wx), EXP, LOG

Specialty Instructions
- DST (distance: computes length of vector)
¢ LIT (quadratic falloff term for lighting)

Later generation:
* Loops and conditional jumps

© Wolfgang Heidrich

Vertex Programs -
Applications

What can they be used for?

+ Can implement all of the stages they replace, but can
allocate resources more dynamically

- E. % transforming a vector by a matrix requires 4
dot products

— Enough memory for 24 matrices
— Can arbitrarily deform objects

= Procedural freeform deformations
— Lots of other applications

= Shading

= Refraction

a DRI

© Wolfgang Heidrich

Vertex Programming Example

Example (from Stephen Cheney)

° Morph between a cube and sphere while doing lighting with a
directional light source (gray output)

Cube position and normal in attributes (input) 0,1

° Sphere position and normal in attributes 2,3

Blend factor in attribute 15

° Inverse transpose model/view matrix in constants 12-14

Composite matrix is in 4-7

Used to transform normal vectors into eye space

Used to convert from object to homogeneous screen space

° Light dir in 20, half-angle vector in 22, specular power, ambient,
diffuse and specular coefficients all in 21

© Wolfgang Heidrich

Vertex Program Example

#blend normal and position

#v= av,+H1-a)v, = a(V,-V,)+ Vv,

MOV R3,
MOV R5,
ADD R8,
ADD Ré6,
MAD R8,
MAD R6,

v[3] ;

v[2] ;

v[1l], -R3 ;

v[0], -R5 ;
v[15].x, R8, R3
v[15].x, R6, R5 ;

transform normal to eye space
DP3R9.x, R8, c[12] ;
DP3R9.y, R8, c[13] ;
DP3R9.z, R8, c[14] ;

transform position and output
DP4 o[HPOS].x, R6, c[4] ;
DP4 o[HPOS] .y, R6, c[5] ;
DP4 o[HPOS].z, R6, c[6] ;
DP4 o[HPOS] .w, R6, c[7] ;

normalize normal
DP3R9.w, R9, R9 ;
RSQ R9.w, R9.w ;
MUL R9, R9.w, R9 ;

apply lighting and output color
DP3RO.x, R9, c[20] ;
DP3RO.y, R9, c[22] ;

MOV RO.zw, c[21] ;

LITR1, RO ;

DP3o[coL0], c[21], R1 ;

© Wolfgang Heidrich

ry, e.g.
- Slngle tnangle mesh modeling both upper and
lower arm

— Ifarm is bent, upper and lower arm remain more
or less in the same shape, but transition zone at
elbow joint needs to deform

© Wolfgang Heidrich

- one for model/view matrix for lower arm, and
= one for model/view matrix for upper arm
— Every vertex is transformed by both matrices

= Yields 2 different transformed vertex
positions!

— Use per-vertex blending weights to interpolate
between the two positions

© Wolfgang Heidrich

=
&
O

/7 ”i
<

/
N\

Skinning “
Arm Example:

> M1: matrix for upper arm
> M2: matrix for lower arm

Upper arm:
weight for M1=1
weight for M2=0

Lower arm:
weight for M1=0
weight for M2=1

Transition zone:
weight for M1 between 0..1
weight for M2 between 0..1

© Wolfgang Heidrich

=
&
@)

)I
\
H
1)

/,’
X
A

Example
by NVIDIA

© Wolfgang Heidrich

Skinning

In general:
> Many different matrices make sense!
EA facial animations: up to 70 different matrices
(“bones”)
— Hardware supported:

Number of transformations limited by
available registers and max. instruction count

of vertex programs
= But dozens are possible today

© Wolfgang Heidrich

GeForce FX Fragment/Pixel
Program Examples

Source: David Kirk/NVIDIA

10

| ‘operation i ‘texture map ‘ng' |

o Al lighting, etc. is done in the vertex processing, before
primitive assembly and rasterization

° In fact, a fragment is only screen position, color, and tex-
coords

What kind of shading interpolation does this
restrict you to?

© Wolfgang Heidrich

rgba output

|- - - » z-deprh output
uo.zo. G lized pixel shader. Vari in the pixel shader language primarily
f ddress instructions work, where temporary results can be stored,

| whether the z-depth can be modified and output.

© Wolfgang Heidrich

1"

Fragment Shaders

- Fragment shaders operate on fragments in place of the
texturing hardware

— After rasterization, before any fragment tests or blending

> Input: The fragment, with screen position, depth, color, and a
set of texture coordinates

» Access to textures and some constant data and registers
» Compute RGBA values for the fragment, and depth
— Can also “kill “a fragment, that is throw it away

» Two types of fragment shaders: register combiners
(GeForce4) and fully programmable (GeForceFX, Radeon
9700)

© Wolfgang Heidrich

Fragment Shader Functionality

At a minimum, we want to be able to do
Phong interpolation

+ How do you get normal vector info?
> How do you get the light?

> How do you get the specular color?
« How do you get the world position?

© Wolfgang Heidrich

Shading Languages

(S

process

Programming shading hardware is still a difficult

— Akin to writing assembly language programs

+ Shading languages and accompanying compilers
allow users to write shaders in high level languages

> Two examples: Microsoft’s HLSL (part of DirectX 9)
and Nvidia’'s Cg (compatable with HLSL)

- Renderman is the ultimate example, but it's not real

time

© Wolfgang Heidrich

Shading Languages

The COMPLETE
Effect And

F HLSL Flii[if!‘

© Wolfgang Heidrich

13

tually a language aﬁd a runtime enviro
Can compile ahead of time, or complle on the fly
Why compile on the fly?

+ What it can do is tightly tied to the hardware

How does it know which hardware, and how to
use it?

© Wolfgang Heidrich

void C5E2v_fragmentLighting{floatd position : POSITION,
float3 normal : MORMAL,

{

}

cut floatd oPosition : POSITION,
ocut float3 objectPos : TEXCOORDO,
out float3 coNormal : TEXCOORDI1,

uniform flcatdxé modelViewProj)
oPosition = mul (modelViewProj, position);

cbjectPos = position.xyz;
oNormal = normal;

© Wolfgang Heidrich

14

vold CSE3f_basicLight {floatd
£loat3

out floatd

uniform float3
uniform floatd
uniform float3
uniform £loatl
uniform float3
uniform floatd
uniform float3
uniform float3
uniform float

£loat3 P = position.xyz;

position
normal

coler

globalambient,
lightColor,
lightPosition,’
eyeFogition,
Ke,

Ka,

K4,

Ks,

shininess)

floatd N = normalize (normal);

'. ¢/ Compute the emissive term

float3 emissive = Ke;

// Compute the ambient term
£loat3 ambient = Ka * globalambient;

/7 Cempute the diffuse term

£loat3 L = normalize(lightPosition - B);

float diffuseLight = max(dot(N, L), 0);

float3 diffuse = Xd * lightColor * diffuselight;

// Compute the specular term

floatd V = normalize{eyePosition - P}:

float3 E = normalize(L + V):

£loat specularLight = pow(max(dot(N, H), 0),
shininess);

if (diffuseLight <= 0) specularlight = 0;

float3 ‘specular = Ks * lightColor * specularLight;

color.xy? = emissive + ambient + diffuse + specular:
color.w.= 1;

© Wolfgang Heidrich

Figure 2-2. Compiling and Loading a Cg Program into the GPU

© Wolfgang Heidrich

15

Bump/Normal Mapping
Normal Mapping Approach:

> Directly encode the normal into the texture map
— (R, G,B)= (x,y,z), appropriately scaled
¢ Then only need to perform illumination computation

— Interpolate world-space light and viewing
direction from the vertices of the primitive

= Can be computed for every vertex in a vertex
shader

= Get interpolated automatically for each pixel
— In the fragment shader:

= Transform normal into world coordinates

= Evaluate the lighting model

© Wolfgang Heidrich

Bump Mapping
Examples

© Wolfgang Heidrich

16

Source: Glassenberg/Microsoft

Fur/Fins

Procedural geometry/detailing
All-GPU Particle Systems
Data visualization techniques
Wide lines and strokes

rinkle

in

‘models
Cartoon and falloff effects
Geometry/data amplification

Source: Glassenberg/Microsoft

17

Geometry Shader Example

Shadow volume generation

Source: Glassenberg/Microsoft

Geometry Shader Example

Generalized displacement maps

Normal mapping
(Direct3REa

Source: Glassenberg/Microsoft

18

Geometry Shader Example

Generalized displacerment maps

Single Pass Render-To-Cubemap

L

Geometry Shader

Source: Glassenberg/Microsoft

19

Single Pass Render-To-Cubemap

Source: Glassenberg/Microsoft

Coming Up...
Thursday:

o Shadows

Tuesday:

B Color

© Wolfgang Heidrich

20

