

Sampling & Reconstruction CPSC 314

Scan Conversion of Lines - Digital Differential Analyzer

First Attempt:

```
dda( float xs, ys, xe, ye ) {
    // assume xs < xe, and slope m between 0 and 1
    float m= (ye-ys)/(xe-xs);
    float y= round( ys );
    for( int x= round( xs ) ; x<= xe ; x++ ) {
        drawPixel( x, round( y ) );
        y= y+m;
    }
}</pre>
```

Texture Mapping

- Real life objects have nonuniform colors, normals
- To generate realistic objects, reproduce coloring & normal variations = texture
- Can often replace complex geometric details

MIPmaps

Multum in parvo -- many things in a small place

- Prespecify a series of prefiltered texture maps of decreasing resolutions
- Requires more texture storage
- Avoid shimmering and flashing as objects move

gluBuild2DMipmaps

Automatically constructs a family of textures from original texture size down to 1x1
 without

Texture Parameters

In addition to color can control other material/object properties

- Surface normal (bump mapping)
- Reflected color (environment mapping)

© Wolfgang Heidrich

Sampling & Reconstruction

CPSC 314

Samples

- Most things in the real world are continuous
- Everything in a computer is discrete
- The process of mapping a continuous function to a discrete one is called sampling
- The process of mapping a discrete function to a continuous one is called reconstruction
- The process of mapping a continuous variable to a discrete one is called quantization
- Rendering an image requires sampling and quantization
- Displaying an image involves reconstruction

© Wolfgang Heidrich

Line Segments

- We tried to sample a line segment so it would map to a 2D raster display
- We quantized the pixel values to 0 or 1
- We saw stair steps, or jaggies

Line Segments

- Instead, quantize to many shades
- But what sampling algorithm is used?

© Wolfgang Heidrich

Unweighted Area Sampling

Shade pixels wrt area covered by thickened line Equal areas cause equal intensity, regardless of distance from pixel center to area

Rough approximation formulated by dividing each pixel into a finer grid of pixels

Primitive cannot affect intensity of pixel if it does not intersect the pixel

© Wolfgang Heidrich

Images An image is a 2D function I(x, y) Specifies intensity for each point (x, y) (we consider each color channel independently) An image seen as a continuous 2D function

Image Sampling and Reconstruction

- Convert continuous image to discrete set of samples
- Display hardware reconstructs samples into continuous image
 - Finite sized source of light for each pixel

Point Sampling an Image

- Simplest sampling is on a grid
- Sample depends solely on value at grid points

Image as spatial signal 2D raster image

Discrete sampling of 2D spatial signal

1D slice of raster image

Discrete sampling of 1D spatial signal

Intensity The Principle of Section 2 casaling and the Section 2 casaling an

Pixel position across scanline

Examples from Foley, van Dam, Feiner, and Hughes © Wolfgang Hei

Sampling Theory

How would we generate a signal like this out of simple building blocks?

Theorem

Original

Any signal can be represented as an (infinite) sum of sine waves at different frequencies

Sampling Theory in a Nutshell

Terminology

- Wavelength length of repeated sequence on infinite signal
- Frequency 1/wavelength (number of repeated sequences in unit length)

Example - sine wave

- Wavelength = 2π
- Frequency = $1/2\pi$

1D Sampling and Reconstruction

Problems

- Jaggies abrupt changes
- Lose data

© Wolfgang Heidrich

Sampling Theorem

Continuous signal can be completely recovered from its samples

IFF

- Sampling rate greater than twice highest frequency present in signal
- Claude Shannon

Aliasing

Incorrect appearance of high frequencies as low frequencies

To avoid: anti-aliasing

- Supersample
 - Sample at higher frequency
- Low pass filtering
 - Remove high frequency function parts
 - Aka prefiltering, band-limiting

Discussion

Sampling & Reconstruction

- Fundamental issue in graphics, vision, and many other areas of computer science
 - Whenever continuous signals need to be represented in a computer
- Aliasing refers to the problem of reconstruction errors due to frequencies above the Nyquist limit
 - These frequencies show up as erroneous low frequency content

© Wolfgang Heidrich

Discussion

Anti-Aliasing Approaches

- Low-pass filtering (before sampling!)
 - Avoids aliasing
 - May not be practical in all settings
 - For images: artifacts around edges?!
- Supersampling
 - General algorithmic approach
 - Hoever: even the higher resolution image has a Nyquist limit!
 - Slow

