

- Real life objects have nonuniform colors, normals
- To generate realistic objects, reproduce coloring & normal variations = texture
- Can often replace complex geometric details

© Wolfgang Heidrich

Texture Mapping

Introduced to increase realism

Lighting/shading models not enough

Hide geometric simplicity

- Images convey illusion of geometry
- Map a brick wall texture on a flat polygon
- Create bumpy effect on surface

Associate 2D information with 3D surface

- · Point on surface corresponds to a point in texture
- "Paint" image onto polygon

Texture Lookup: Tiling and Clamping

What if s or t is outside the interval [0...1]? Multiple choices

- Use fractional part of texture coordinates
 - Cyclic repetition of texture to tile whole surface glTexParameteri(..., GL_TEXTURE_WRAP_S, GL_REPEAT, GL_TEXTURE_WRAP_T, GL_REPEAT, ...)
- Clamp every component to range [0...1]
 - Re-use color values from texture image border glTexParameteri(..., GL_TEXTURE_WRAP_S, GL_CLAMP, GL_TEXTURE_WRAP_T, GL_CLAMP, ...)

Texture Coordinate Transformation

Motivation

Change scale, orientation of texture on an object

Approach

- Texture matrix stack
- Transforms specified (or generated) tex coords glMatrixMode(GL_TEXTURE); glLoadIdentity(); glRotate();

. . .

• More flexible than changing (s,t) coordinates

Texture Functions

Once you have value from the texture map, can:

- Directly use as surface color: GL REPLACE
 - Throw away old color, lose lighting effects
- Modulate surface color: GL MODULATE
 - Multiply old color by new value, keep lighting info
 - Texturing happens after lighting, not relit
- Use as surface color, modulate alpha: GL DECAL
 - Like replace, but supports texture transparency
- Blend surface color with another: GL BLEND
 - New value controls which of 2 colors to use

Specify desired behavior with glTexEnvi (GL_TEXTURE_ENV, GL TEXTURE ENV MODE, <mode>)

Texture Objects and Binding

Texture object

- An OpenGL data type that keeps textures resident in memory and provides identifiers to easily access them
- Provides efficiency gains over having to repeatedly load and reload a texture
- You can prioritize textures to keep in memory
- OpenGL uses least recently used (LRU) if no priority is assigned

Texture binding

- · Which texture to use right now
- Switch between preloaded textures

© Wolfgang Heidrich

Basic OpenGL Texturing

Create a texture object and fill it with texture data:

- glGenTextures (num, &indices) to get identifiers for the objects
- glBindTexture (GL_TEXTURE_2D, identifier) to bind
 - Following texture commands refer to the bound texture
- glTexParameteri (GL_TEXTURE_2D, ..., ...) to specify parameters for use when applying the texture
- glTexImage2D(GL_TEXTURE_2D,) to specify the texture data (the image itself)

Basic OpenGLTexturing (cont.)

Enable texturing:

• glEnable (GL TEXTURE 2D)

State how the texture will be used:

qlTexEnvf(...)

Specify texture coordinates for the polygon:

- Use glTexCoord2f(s,t) before each vertex:

© Wolfgang Heidrich

Low-Level Details

Large range of functions for controlling layout of texture data

- State how the data in your image is arranged
- e.g.: glPixelStorei(GL_UNPACK_ALIGNMENT, 1) tells
 OpenGL not to skip bytes at the end of a row
- You must state how you want the texture to be put in memory: how many bits per "pixel", which channels,...

Textures must have a size of power of 2

- Common sizes are 32x32, 64x64, 256x256
- But don't need to be square, i.e. 32x64 is fine
- Smaller uses less memory, and there is a finite amount of texture memory on graphics cards

Texture Coordinate Interpolation

Perspective correct interpolation

- α, β, γ:
 - Barycentric coordinates of a point **P** in a triangle
- s0, s1, s2:
 - Texture coordinates of vertices
- w0, w1,w2:
 - Homogeneous coordinates of vertices

$$s = \frac{\alpha \cdot s_0 / w_0 + \beta \cdot s_1 / w_1 + \gamma \cdot s_2 / w_2}{\alpha / w_0 + \beta / w_1 + \gamma / w_2}$$

Texture Parameters

In addition to color can control other material/object properties

- Surface normal (bump mapping)
- Reflected color (environment mapping)

Bump Mapping: Normals As Texture

Object surface often not smooth – to recreate correctly need complex geometry model

Can control shape "effect" by locally perturbing surface normal

- Random perturbation
- Directional change over region

Environment Mapping

Cheap way to achieve reflective effect

- Generate image of surrounding
- Map to object as texture

Wolfgang Heidrich

Sphere Mapping

Texture is distorted fish-eye view

- · Point camera at mirrored sphere
- Spherical texture mapping creates texture coordinates that correctly index into this texture map

Cube Mapping

Direction of reflection vector r selects the face of the cube to be indexed

- Co-ordinate with largest magnitude
 - e.g., the vector (-0.2, 0.5, -0.84) selects the -Z face
- Remaining two coordinates (normalized by the 3rd coordinate) selects the pixel from the face.
 - E.g., (-0.2, 0.5) gets mapped to (0.38, 0.80).

Difficulty in interpolating across faces

© Wolfgang Heidrich

Volumetric (3D) Texture Define texture pattern over 3D domain - 3D space containing the object • Texture function can be sampled - 3D table of texels • Or procedural - A function describes the color at each point - Implemented in special shading language Common for natural material/irregular textures (stone, wood, etc...)

Procedural Textures

Generate "image" on the fly, instead of loading from disk

- Also called shader
- Often saves space
- Allows arbitrary level of detail
 - "magnification" not an issue
 - "minification" less so than for sampled representation
- But can be quite slow for complicated shaders

Volumetric Texture Mapping

In Hardware:

- Sampled 3D textures supported very much analogously to 2D textures:
 - glTexCoord3f, glTexImage3f...
- Procedural textures supported with modern GPUs
 - More in upcoming lectures

© Wolfgang Heidrich

Coming Up...

Thursday:

- Sampling
- A2 due...

Tuesday:

Quiz 2