

Hidden Surface Removal/ Visibility

CPSC 314

Scan Conversion of Lines - Digital Differential Analyzer

First Attempt:

```
dda( float xs, ys, xe, ye ) {
    // assume xs < xe, and slope m between 0 and 1
    float m= (ye-ys)/(xe-xs);
    float y= round( ys );
    for( int x= round( xs ) ; x<= xe ; x++ ) {
        drawPixel( x, round( y ) );
        y= y+m;
    }
}</pre>
```

Scan Conversion of Lines Midpoint Algorithm

Moving horizontally along x direction

- Draw at current y value, or move up vertically to y+1?
 - Check if midpoint between two possible pixel centers above or below line

Candidates

- Top pixel: (x+1,y+1)
- Bottom pixel: (x+1, y)

Midpoint: (x+1, y+.5)

Check if midpoint above or below line

- · Below: top pixel
- · Above: bottom pixel

Key idea behind Bresenham Alg.

Scan Conversion of Lines

Bresenham Algorithm

```
Bresenham( int xs, ys, xe, ye ) {
    int y= ys;
    incrE= 2(ye - ys);
    incrNE= 2((ye - ys) - (xe-xs));
    for( int x= xs ; x<= xe ; x++ ) {
        drawPixel( x, y );
        if( d<= 0 ) d+= incrE;
        else { d+= incrNE; y++; }
    }
}</pre>
```

© Wolfgang Heidrich

Scan Conversion of Polygons

- Works for arbitrary polygons
- Efficiency improvement:
 - Exploit row-to-row coherence using "edge table"

Computing Edge Equations

Summary:

Now we have only ONE equation

$$L(x,y) = -(y_e - y_s)(x - x_s) + (y - y_s)(x_e - x_s)$$

- Works for both cases
- Also works for vertical lines!

© Wolfgang Heidrich

Plane Equation: Interpolating Vertex Attributes

Observation: Quantities vary linearly across image plane

- E.g.: r = Ax + By + C
 - r= red channel of the color
 - Same for g, b, Nx, Ny, Nz, z...
- From info at vertices we know:

$$r_1 = Ax_1 + By_1 + C$$

$$r_2 = Ax_2 + By_2 + C$$

$$r_3 = Ax_3 + By_3 + C$$

- Solve for A, B, C
- One-time set-up cost per triangle and interpolated quantity

Occlusion

For most interesting scenes, some polygons overlap

 To render the correct image, we need to determine which polygons occlude which

© Wolfgang Heidrich

Painter's Algorithm

Draw cyan, then green, then red

will this work in the general case?

Painter's Algorithm: Problems

- Intersecting polygons present a problem
- Even non-intersecting polygons can form a cycle with no valid visibility order:

© Wolfgang Heidrich

Hidden Surface Removal

Object Space Methods:

- Work in 3D before scan conversion
 - E.g. Painter's algorithm
- Usually independent of resolution
 - Important to maintain independence of output device (screen/printer etc.)

Image Space Methods:

- Work on per-pixel/per fragment basis after scan conversion
- Z-Buffer/Depth Buffer
- Much faster, but resolution dependent

The Z-Buffer Algorithm

- What happens if multiple primitives occupy the same pixel on the screen?
- Which is allowed to paint the pixel?

© Wolfgang Heidrich

The Z-Buffer Algorithm

Idea: retain depth after projection transform

- Each vertex maintains z coordinate
 - Relative to eye point
- Can do this with canonical viewing volumes

The Z-Buffer Algorithm

Augment color framebuffer with Z-buffer

- Also called depth buffer
- Stores z value at each pixel
- At frame beginning, initialize all pixel depths to ∞
- When scan converting: interpolate depth (z) across polygon
- Check z-buffer before storing pixel color in framebuffer and storing depth in z-buffer
- don't write pixel if its z value is more distant than the z value already stored there

© Wolfgang Heidrich

Z-Buffer

Store (r,g,b,z) for each pixel

```
typically 8+8+8+24 bits, can be more
for all i,j {
   Depth[i,j] = MAX_DEPTH
   Image[i,j] = BACKGROUND_COLOUR
}
for all polygons P {
   for all pixels in P {
     if (Z_pixel < Depth[i,j]) {
        Image[i,j] = C_pixel
        Depth[i,j] = Z_pixel
   }
   }
}</pre>
```


Interpolating Z

Edge walking

Just interpolate Z along edges and across spans

Barycentric coordinates

- Interpolate z like other parameters
- E.g. color

© Wolfgang Heidrich

The Z-Buffer Algorithm (mid-70's)

History:

- Object space algorithms were proposed when memory was expensive
- First 512x512 framebuffer was >\$50,000!

Radical new approach at the time

- The big idea:
 - Resolve visibility independently at each pixel

Depth Test Precision

- Reminder: projective transformation maps eyespace z to generic z-range (NDC)
- · Simple example:

$$T \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Thus:

$$z_{NDC} = \frac{a \cdot z_{eye} + b}{z_{eye}} = a + \frac{b}{z_{eye}}$$

© Wolfgang Heidrich

Depth Test Precision

- Therefore, depth-buffer essentially stores 1/z, rather than z!
- Issue with integer depth buffers
 - High precision for near objects
 - Low precision for far objects

Depth Test Precision

- Low precision can lead to depth fighting for far objects
 - Two different depths in eye space get mapped to same depth in framebuffer
 - Which object "wins" depends on drawing order and scan-conversion
- Gets worse for larger ratios f:n
 - **–** Rule of thumb: f:n < 1000 for 24 bit depth buffer
- With 16 bits cannot discern millimeter differences in objects at 1 km distance

© Wolfgang Heidrich

Z-Buffer Algorithm Questions

- How much memory does the Z-buffer use?
- Does the image rendered depend on the drawing order?
- Does the time to render the image depend on the drawing order?
- How does Z-buffer load scale with visible polygons?
 with framebuffer resolution?

Z-Buffer Pros

- Simple!!!
- Easy to implement in hardware
 - Hardware support in all graphics cards today
- Polygons can be processed in arbitrary order
- Easily handles polygon interpenetration

Z-Buffer Cons

Requires lots of memory

(e.g. 1280x1024x32 bits)

Requires fast memory

Read-Modify-Write in inner loop

Hard to simulate transparent polygons

- We throw away color of polygons behind closest one
- · Works if polygons ordered back-to-front
 - -Extra work throws away much of the speed advantage

© Wolfgang Heidrich

Object Space Algorithms

Determine visibility on object or polygon level

Using camera coordinates

Resolution independent

Explicitly compute visible portions of polygons

Early in pipeline

After clipping

Requires depth-sorting

- Painter's algorithm
- BSP trees

Object Space Visibility Algorithms

 Early visibility algorithms computed the set of visible polygon fragments directly, then rendered the fragments to a display:

© Wolfgang Heidrich

Object Space Visibility Algorithms What is the minimum worst-case cost of computing the fragments for a scene composed of *n* polygons? Answer: O(n²)

Object Space Visibility Algorithms

- So, for about a decade (late 60s to late 70s) there was intense interest in finding efficient algorithms for hidden surface removal
- We'll talk about one:
 - Binary Space Partition (BSP) Trees
 - Still in use today for ray-tracing, and in combination with z-buffer

© Wolfgang Heidrick

Binary Space Partition Trees (1979)

BSP Tree: partition space with binary tree of planes

- Idea: divide space recursively into half-spaces by choosing splitting planes that separate objects in scene
- Preprocessing: create binary tree of planes
- Runtime: correctly traversing this tree enumerates objects from back to front

Traversing BSP Trees

Tree creation independent of viewpoint

Preprocessing step

Tree traversal uses viewpoint

Runtime, happens for many different viewpoints

Each plane divides world into near and far

- For given viewpoint, decide which side is near and which is far
 - Check which side of plane viewpoint is on independently for each tree vertex
 - Tree traversal differs depending on viewpoint!
- Recursive algorithm
 - Recurse on far side
 - Draw object
 - Recurse on near side

© Wolfgang Heidrich

UBC

Traversing BSP Trees

```
renderBSP(BSPtree *T)

BSPtree *near, *far;

if (eye on left side of T->plane)

near = T->left; far = T->right;

else

near = T->right; far = T->left;

renderBSP(far);

if (T is a leaf node)

renderObject(T)

renderBSP(near);
```


BSP Tree Traversal: Polygons

- Split along the plane defined by any polygon from scene
- Classify all polygons into positive or negative halfspace of the plane
 - If a polygon intersects plane, split polygon into two and classify them both
- Recurse down the negative half-space
- Recurse down the positive half-space

Summary: BSP Trees

Pros:

- · Simple, elegant scheme
- Correct version of painter's algorithm back-to-front rendering approach
- Still very popular for video games (but getting less so)

Cons:

- Slow(ish) to construct tree: O(n log n) to split, sort
- Splitting increases polygon count: O(n²) worstcase
- Computationally intense preprocessing stage restricts algorithm to static scenes

Optimization using Visibility: Back-Face Culling

 On the surface of a closed orientable manifold, polygons whose normals point away from the camera are always occluded:

Back-Face Culling

Not rendering backfacing polygons improves performance

- Reduces by about half the number of polygons to be considered for each pixel
- Optimization when appropriate

Back-Face Culling

Most objects in scene are typically "solid" rigorously: orientable closed manifolds

- Orentable: must have two distinct sides
 - Cannot self-intersect
 - A sphere is orientable since has two sides, 'inside' and 'outside'.
 - A Mobius strip or a Klein bottle is not orientable
- Closed: surface encloses a volume
 - Sphere is closed manifold
 - Plane is not

© Wolfgang Heidrich

Back-Face Culling

UBC

Most objects in scene are typically "solid" Rigorously: orientable closed manifolds

- Manifold: local neighborhood of all points isomorphic to disc
- Boundary partitions space into interior & exterior

