© Wolfgang Heidrich

S

© Wolfgang Heidrich

Scan Conversion of Lines -
Digital Differential Analyzer

First Attempt:

dda(float xs, ys, xe, ye) {
// assume xs < xe, and slope m between 0 and 1
float m= (ye-ys)/(xe-xs);
float y=round(ys);
for(int x=round(xs) ; x<=xe ; x++) {
drawPixel(x, round(y));
y= y+tm;

© Wolfgang Heidrich

Scan Conversion of Lines
Midpoint Algorithm

Moving horizontally along x direction
- Draw at current y value, or move up vertically to y+17?

— Check if midpoint between two possible pixel centers above
below line

Candidates
> Top pixel: (x+1,y+1)

+ Bottom pixel: (x+1, y)
Midpoint: (x+1, y+.5)
Check if midpoint above or below line

> Below: top pixel

= Above: bottom pixel

Key idea behind Bresenham Alg.

© Wolfgang Heidrich

mcre= 20}
inerNE=2((ye - y5) ~ (xe-x9));
for(int x=xs ; x<=xe ; x++) {

drawPixel(X,y);

if(d<= 0) d+= incrE;

else { d+=incrNE; y++; }

© Wolfgang Heidrich

© Wolfgang Heidrich

Edge Walking

for (y=yB; y<syT; y++) {
for (x=xL; x<=xR; x++)
setPixel (x,y);

xL += DxL;
xR += DxR;
}
Yr '\ /
1 21
v, AW L -
Ax, Xy Xp R

© Wolfgang Heidrich

Modern Rasterization:
Edge Equations

Define a triangle as follows:

()
&t
7 XX

-

. L2
* -
o 55
4 +
* *
*. L2
. L2

g = >

© Wolfgang Heidrich

» Works for both cases
« Also works for vertical lines!

© Wolfgang Heidrich

Frorﬁ inifo‘;'at vertll)ces;ve k’nov:/
r,=Ax,+ By +C
r,=Ax,+By,+C
r,=Ax,+By,+C

— Solve for A, B, C

— One-time set-up cost per triangle and interpolated p2
quantity

© Wolfgang Heidrich

6989 66669
96%e0e/ < DO00O0O
S \ece0e @ (00000
0l0C\0000/ 000 0\000/ c
000900QC 00 000000® 000
O00QHODOOOOOOOOOOO00
Q000 CO0000000VCO000
0]0/0/0/0)50/0/0/0/0]0)0/0/9/00]0]0]0)
0]0/0]0/8(0/0/0/0/0.0/0/0/0/6{0/0/0)0]0)
0]6]6]0[6/0/0]0/0[0(0(0[0[0/0[0[0)0)0]e,

0]0]0/0/0/0/0/00/0/0/0/0/0
0]0]0/6/0.0/0/0/0/0/0/0/0.0
0]0]0]0]0/0/0/0/0/0/0/0/0.0
0]0]0/0/0/0/0/0/0/0/0/0/0.0
0]0]0]9/5(0]0/0/0/0/0/0/0.0
Q000000000000
OO0COHOOOOOOO00O
Q000000000000
0]0]0/0/0/6/0/0/0/0/0/0/0/®
0]0]6/6/6/6/0/6/0/00/0/0/0,

© Wolfgang Heidrich

Rasterization

| .--'

Fragment Processing

© Wolfgang Heidrich

> To render the correct image, we need to determine
which polygons occlude which

© Wolfgang Heidrich

s from back to 'Jﬂ'f()'!llﬂ,.

> Draw cyan, then green, then red
will this work in the general case?

© Wolfgang Heidrich

Painter’s Algorithm: Problems

« Intersecting polygons present a problem

> Even non-intersecting polygons can form a cycle
with no valid visibility order:

© Wolfgang Heidrich

Hidden Surface Removal
Object Space Methods:

» Work in 3D before scan conversion
— E.g. Painter’s algorithm
» Usually independent of resolution

— Important to maintain independence of output
device (screen/printer etc.)

Image Space Methods:

Work on per-pixel/per fragment basis after scan
conversion

« Z-Buffer/Depth Buffer
° Much faster, but resolution dependent

© Wolfgang Heidrich

© Wolfgang Heidrich

© Wolfgang Heidrich

10

> At frame beginning, initialize all pixel depths to
+ When scan converting: interpolate depth (z) across
polygon

> Check z-buffer before storing pixel color in
framebuffer and storing depth in z-buffer

» don’t write pixel if its z value is more distant than
the z value already stored there

© Wolfgang Heidrich

}Imaqe[1%
for all polygons P {
for all pixels in P {
if (Z_pixel < Depth[i,j]) {
Image[i,j] C_pixel
Depthl[i,]] Z_pixel
}
}

}

© Wolfgang Heidrich

1"

> Interpolate z like other
parameters

> E.g. color

© Wolfgang Heidrich

Radical new approach at the time
> The big idea:
— Resolve visibility independently at each pixel

© Wolfgang Heidrich

12

¢ Thus:

© Wolfgang Heidrich

© Wolfgang Heidrich

13

Depth Test Precision

> Low precision can lead to depth fighting for far objects

— Two different depths in eye space get mapped to
same depth in framebuffer

— Which object “wins” depends on drawing order and
scan-conversion

> Gets worse for larger ratios f:n
— Rule of thumb: f:n < 1000 for 24 bit depth buffer

» With 16 bits cannot discern millimeter differences
in objects at 1 km distance

© Wolfgang Heidrich

Z-Buffer Algorithm Questions

> How much memory does the Z-buffer use?

+ Does the image rendered depend on the drawing
order?

> Does the time to render the image depend on the
drawing order?

How does Z-buffer load scale with visible polygons?
with framebuffer resolution?

© Wolfgang Heidrich

14

© Wolfgang Heidrich

eye |

Shared edges are handled inconsistently
« Ordering dependent

© Wolfgang Heidrich

15

Z-Buffer Cons

Requires lots of memory
> (e.g. 1280x1024x32 bits)
Requires fast memory
» Read-Modify-Write in inner loop
Hard to simulate transparent polygons

> We throw away color of polygons behind closest
one

* Works if polygons ordered back-to-front

—Extra work throws away much of the speed
advantage

© Wolfgang Heidrich

Object Space Algorithms

Determine visibility on object or polygon
level

+ Using camera coordinates
Resolution independent

> Explicitly compute visible portions of polygons
Early in pipeline

> After clipping
Requires depth-sorting

¢ Painter’s algorithm

» BSP trees

© Wolfgang Heidrich

16

Object Space Visibility Algorithms

» Early visibility algorithms computed the set of visible
polygon fragments directly, then rendered the fragments
to a display:

© Wolfgang Heidrich

Object Space Visibility Algorithms

What is the minimum worst-case cost of
computing the fra?ments for a scene
composed of n polygons?

Answer:
O(n?)

© Wolfgang Heidrich

17

Object Space Visibility Algorithms

+ So, for about a decade (late 60s to late 70s) there
was intense interest in finding efficient algorithms
for hidden surface removal

- We’ll talk about one:
— Binary Space Partition (BSP) Trees

— Still in use today for ray-tracing, and in
combination with z-buffer

© Wolfgang Heidrich

Binary Space Partition Trees (1979)

BSP Tree: partition space with binary tree of
planes

+ |dea: divide space recursively into half-spaces by
choosing splitting planes that separate objects in
scene

> Preprocessing: create binary tree of planes

* Runtime: correctly traversing this tree enumerates
objects from back to front

© Wolfgang Heidrich

18

© Wolfgang Heidrich

© Wolfgang Heidrich

19

© Wolfgang Heidrich

© Wolfgang Heidrich

20

© Wolfgang Heidrich

Split the object;

half to each node

s

give

® - ¢

© Wolfgang Heidrich

21

For given viewpoint, decide which side is near and which is far

— Check which side of plane viewpoint is on independently for
each tree vertex

- Tree traversal differs depending on viewpoint!
Recursive algorithm

Recurse on far side

Draw object

Recurse on near side

© Wolfgang Heidrich

else

near = T->right; far = T->left;
renderBSP (far) ;

|

if (T is a leaf node)
renderObject (T)

renderBSP (near) ;

© Wolfgang Heidrich

22

23

- —— ———

= decide independently at

each tree vertex

© Wolfgang Heidrich

= not just left or right child!

ng Heidrich

© Wolfgat

24

25

jang Heidrich

© Wolfg

ng Heidrich

© Wolfgat

26

27

jang Heidrich

© Wolfg

ng Heidrich

© Wolfgat

28

© Wolfgang Heidrich

© Wolfgang Heidrich

29

— =

]

~
o

© Wolfgang Heidrich

Ifa polygbnuintersecﬁts plane, split polygon into
two and classify them both

Recurse down the negative half-space
Recurse down the positive half-space

© Wolfgang Heidrich

30

© Wolfgang Heidrich

° Stif)ll very popular for video games (but getting less
SO

Cons:
« Slow(ish) to construct tree: O(n log n) to split, sort

« Splitting increases polygon count: O(n?) worst-
case

» Computationally intense preprocessing stage
restricts algorithm to static scenes

© Wolfgang Heidrich

31

On the surface

S

note: backface culling
alone doesn’t solve the
hidden-surface problem!

© Wolfgang Heidrich

| ed for each pixe
> Optimization when appropriate

© Wolfgang Heidrich

32

Back-Face Culling

Most objects in scene are typically “solid”

rigorously: orientable closed manifolds
¢ Orentable: must have two distinct sides
— Cannot self-intersect

— A sphere is orientable since has
two sides, 'inside’ and ‘outside’.

— A Mobius strip or a Klein bottle is
not orientable

» Closed: surface encloses a volume
— Sphere is closed manifold
— Plane is not

© Wolfgang Heidrich

Back-Face Culling

Most objects in scene are typically “solid”

Rigorously: orientable closed manifolds
° Manifold: local neighborhood of all points isomorphic to disc
° Boundary partitions space into interior & exterior

<& 3

(- 2@

e 4 &
g

f 4

© Wolfgang Heidrich

Manifold

Examples of manifold objects:
Sphere
Torus

Well-formed
CAD part

© Wolfgang Heidrich

Back-Face Culling

Examples of non-manifold objects: gl

> A single polygon

> Aterrain or height field

* Polyhedron w/ missing face
* Anything with cracks or holes in boundary
* One-polygon thick lampshade

© Wolfgang Heidrich

34

better idea:

misses polygons that
should be culled

cull if eye is below polygon plane

© Wolfgang Heidrich

NDCS

eye

works to cull if N, >0

© Wolfgang Heidrich

35

Rasterization Fragment Processing

© Wolfgang Heidrich

Quiz 1 Solutions (Brad)

Pickil g Alpha Blending, Double Buffer (Brad)

© Wolfgang Heidrich

36

