Lighting & Shading
CPSC 314

© Wottgang Heidrich

© Wolfgang Haidnch

» Viewer position
Local illumination
» Compute at material, from light to viewer
Global illumination (later in course)
» Ray tracing: from viewer into scene
» Radiosity: between surface patches

—~Can be added through tricks, multiple rendering
passes
Light sources
» Simple shapes
Materials

+ Simple, non-physical reflection models

@ Wiallgang Heidrich

arallel lights

— Homogeneous vector
¢ (Homogeneous) point lights
— Same intensity in all directions
— Homogeneous point
+ Spot lights
— Limited set of directions

— Point+direction+cutoff angle i S :

Hidrich

— Demo: http://www.xmission.com/~nate/tutors.html
» Alternative: camera coordinate system
— Effect: lights attached to camera (car headlights)

= Points and directions undergo normal model/view
transformation

illumination calculations: camera coords

© Wolfgang Heidrich

Types of Reflection

« Specular (a.k.a. mirror or regular) reflection causes light to
propagate without scattering.

« Diffuse reflection sends light in all directions with equal

energy.
« Mixed reflection is a weighted

combination of specular and diffuse. “u [7
£y -

© Wolfgang Haidrich

Reflectance Distribution Model

Most surfaces exhibit complex reflectances
« Vary with incident and reflected directions.
« Model with combination

AVARRV - ¢

specular + glossy + diffuse =
reflectance distribution

© Violfgang Hudrich

Lambert’s “Law”
Lambert's Cosine Law

Intuitively: cross-sectional area of
the “beam” intersecting an element
of surface area is smaller for greater
angles with the normal.

© Wollgang Heidrich

Computing Diffuse Reflection
» Depends on angle of incidence: angle between surface
normal and incoming light ! -
= IJ,I,W =k l,ig,l, cos 6
« In practice use vector arithmetic
= Liigise = g Lyggy (0 =)
= Always normalize vectors used in lighting
— n, I should be unit vectors
= Scalar (B/W intensity) or 3-tuple or 4-tuple (color)
- ky: diffuse coefficient, surface color
= lygy: incoming light intensity
— lymuse: OUtgoing light intensity (for diffuse reflection)

© Violfgang Heidrich

Empirical Approximation
Angular falloff

_ 14
/ v 7

how might we model this falloff?

© Wolfgang Heidrich

Phong Lighting

Most common lighting model in computer graphics
— (Phong Bui-Tuong, 1975)

n s
Ispecular = ksIlight (COS ¢) o

Ny purel{ empirical constant, varies 7~
rate of fallof

k,: specular coefficient, highlight color

no physical basis, works
ok in practice

© Woifgang Heidrich

what does this term control, visually?

Viewing angle — reflected angle

© Wollgang Heidrich

« v unit vector towards viewer/eye
« r:ideal reflectance direction (unit vector)
kgt specular component
— highlight color
lign: incoming light intensity

varying Nshiny

© Wolfgang Haidnch

o E \ fgh rce e > pe |
Materials: amount of RGB light reflected
« Value represents percentage reflected

e.g., (0.0,1.0,0.5)

Interaction: multiply components
» Red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

© Wollgang Heidrich

. amb_light rgba):

glLightfv(GL_LIGHTO, GL_POSITION, position):
glEnable(GL_LIGHTO);

glMaterialfv(GL_FRONT, GL_AMBIENT, ambient_rgba);
glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse_rgba);
glMaterialfv(GL_FRONT, GL_SPECULAR, specular_rgba);
glMaterialfv(GL_FRONT, GL_SHININESS, n);

© Wolfgang Heidrich

Shading
CPSC 314

© Wollgang Hoiddch

Shading

= The process of computing pixel colors

© Wollgang Heidrich

across the facet.
° why?

°

facets, which points should we use?
Fairly expensive calculation

Several possible answers, each with different
implications for visual quality of result

© Wolfgang Haidnch

obviously inaccurate for smooth surfaces

© Wollgang Heidrich

© Wolfgang Heidrich

» For point sources, the directi ght e ‘
varies across the facet pg —=
‘—
« For specular reflectance, direction to -
eye varies across the facet
© Wolfgang Heldrich-

3 B , but result still cle a
For smoother-looking surfaces
we introduce vertex normals at each
vertex
* Usually different from facet normal
+ Used only for shading

« Think of as a better approximation of the real surface
that the polygons approximate

© Wollgang Heidrich

Perform

— Along edges

— Along scanlines edge: mixof ¢, ¢, C;
Same as Barycentric Coordinates!

interior: mix of c1, ¢2, ¢3

edge: mix of ¢1, c3

p! . :
averaging the normals
of the facets that
share the vertex

‘with a+f
> @, f, and y are called

barycentric coordinates

© Wollgang Heidrich

Xz

X = ox, + X, + yX; with
a=A/A
B=A4,/A

X y=A4A/A

© Wolfgang Heidrich

this interior shading missed!

C,

this vertex shading spread
over too much area
© Wolfgang Heldrich-

: (€ Cllld S f fl =
« Very disturbing, especially for highlights

& Woligang Haidrich

i omb 0

[
under perspective transformations

s Thus, perspective projection alters the linear
interpolation!

© Wollgang Heidrich

» Same input as Gouraud shading
+ Pro: much smoother results
« Con: considerably more expensive

Not the same as Phong lighting
= Common confusion

+ Phong lighting: empirical model to calculate illumination at
a point on a surface

© Wolfgang Heidrich

Discontinuity in rate
of color change
occurs here

© Wolfgang Haidnch

= Usually ignored since often only small difference

— Usually smaller than changes from lighting
variations

» To do it right
— Either shading in object space
— Or correction for perspective foreshortening
— Expensive — thus hardly ever done for colors

© Wollgang Heidrich

i=1
remember: normals used in
diffuse and specular terms

N .t #I’ghts 5 v
Lot Kl iers F E Ii(kd(n'll)"' ks(v‘rl)nm)
NT

discontinuity in normal’s rate of
change harder to detect

© Wolfgang Heidrich

r normalization and lighting

> Floating point operations required
Lighting after perspective projection
+ Messes up the angles between vectors

s Have to keep eye-space vectors around
no direct support in hardware

* But can be simulated with texture mapping

and color
< same point
— =

Interpolate between Interpolate between
AB and AD CD and AD

> Compute Ph
Gouraud shading

» Compute Phong lighting at the vertices and
interpolate lighting values across polygon

Phong shading

> Compute averaged vertex normals

= Interpolate normals across polygon and perform
Phong lighting across polygon

© Wolfgang Heidrich

Gouraud Phong

© Wolfgang Haidnch

first portion of the scanline
is interpolated between DE and AC

second portion of the scanline
is interpolated between BC and GH

a large discontinuity could arise

© Wollgang Heidrich

© Wolfgang Heidrich

Thursday:
* Clipping
° Aldue

