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Rasterization

Fragment Processing

© Wolfgang Heidrich




Light Sources and Materials

Appearance depends on
> Light sources, locations, properties
> Material (surface) properties
> Viewer position
Local illumination
» Compute at material, from light to viewer
Global illumination (later in course)
¢ Ray tracing: from viewer into scene
» Radiosity: between surface patches
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llumination in the
Rendering Pipeline

Local illumination
» Only models light arriving directly from light source
> No interreflections and shadows

—Can be added through tricks, multiple rendering
passes

Light sources
» Simple shapes
Materials
> Simple, non-physical reflection models
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+  (Homogeneous) point lights
— Same intensity in all directions
—  Homogeneous point

> Spot lights

—  Limited set of directions
—  Point+direction+cutoff angle
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« Alternative: camera coordinate system
— Effect: lights attached to camera (car headlights)

» Points and directions undergo normal model/view
transformation

illumination calculations: camera coords
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- Diffuse reflection sends light in all directions with equal

energy. N‘_\
» Mixed reflection is a weighted

combination of specular and diffuse. M
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specular + glossy + diffuse =
reflectance distribution
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Lambert’s “Law”

Lambert's Cosine Law

Cosine Law: Eg = E * cos(0)

i
Intuitively: cross-sectional area of i
the “beam” intersecting an element
of surface area is smaller for greater
angles with the normal.
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Computing Diffuse Reflection

> Depends on angle of incidence: angle between surface
normal and incoming light

/ n
= Ligse ™ kg L €OS o
» In practice use vector arithmetic
— Lygise = Ky Lyigpe (0 ® D
> Always normalize vectors used in lighting
— n, I should be unit vectors
> Scalar (B/W intensity) or 3-tuple or 4-tuple (color)
— k. diffuse coefficient, surface color
— ligne incoming light intensity
— lymse: OUtgoINg light intensity (for diffuse reflection)
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Empirical Approximation
Angular falloff

A

!

=

/8,

how might we model this falloff?
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Phong Lighting

Most common lighting model in computer graphics
— (Phong Bui-Tuong, 1975)

n._..
_ shiny
Ispecular - ksIlight (COS ¢) — l Q\
ng,,, : purely empirical constant, varies 7~ FY o
rate of falloff l A q) 7
k,: specular coefficient, highlight color /’
no physical basis, works ! 81 : \

ok in practice
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Phong Lighting: The ng,;, Term

> Phong reflectance term drops off with divergence of viewing
angle from ideal reflected ray

what does this term control, visually?

Viewing angle — reflected angle
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Phong Examples

varying |

varying n

shiny

99000
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V: unit vector towards viewer/eye
r: ideal reflectance direction (unit vector)
kg: specular component
— highlight color
lign: incoming light intensity
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- Eve t source ambient, diffuse
Materials: amount of RGB light reﬂected

» Value represents percentage reflected
e.g. (0.0,1.0,0.5)

Interaction: multiply components

* Red light (1,0,0) x green surface (0,1,0) = black (0,0,0)
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gIMaterialfv( GL_FRONT, GL_ AMBIENT, ambient rgba );
glMaterialfv( GL_FRONT, GL_DIFFUSE, diffuse rgba );
glMaterialfv( GL_FRONT, GL_SPECULAR, specular_rgba );
glMaterialfv( GL_FRONT, GL_SHININESS, n );
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Shading

» The process of computing pixel colors

.3

-

>
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fa

cets, which points should we us
Fairly expensive calculation

e CoTined A% Mesh of Boldons

e?

Several possible answers, each with different

implications for visual quality of result
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Applying lllumination

Polygonal/triangular models
Each facet has a constant surface normal

- If light is directional, diffuse reflectance is constant
across the facet.

*  why?
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Flat Shading

> Simplest approach calculates illumination at a
single point for each polygon

> obviously inaccurate for smooth surfaces
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Flat Shading Approximations

If an object really is faceted, is
this accurate?
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Flat Shading Approximations

If an object really is faceted, is
this accurate?

no!

= For point sources, the direction to light
varies across the facet o
<
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> For specular reflectance, direction to
eye varies across the facet
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. Better, bui

For smoother-looking surfaces
we introduce vertex normals at each
vertex XA

s Usually different from facet normal
*  Used only for shading

= Think of as a better approximation of the real surface
that the polygons approximate
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+  Approximated by
averaging the normals

of the facets that
share the vertex
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— Along scanlines edge: mix of ¢, ¢, |, C,

Same as Barycentric Coordinates!

...........

interior: mix of ¢1, ¢2, c3
edge: mix of ¢, ¢3
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Convex combination of 3 points

° a, B, andy are called
barycentric coordinates

X3
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X = oX, + X, + yX, with
a=A4ATA

p=A,1A
y=A4A,/A
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this interior shading missed!

& this vertex shading spread
over too much area
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Gouraud Shading Artifacts
Mach bands

> Eye enhances discontinuity in first derivative
» Very disturbing, especially for highlights
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Gouraud Shading Artifacts

Mach bands
C,

Discontinuity in rate
of color change
occurs here
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+ Thus, perSpective projection alters the linear
interpolation!
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, the camera
» Usually ignored since often only small difference

— Usually smaller than changes from lighting
variations

> To do it right
— Either shading in object space
— Or correction for perspective foreshortening
— Expensive — thus hardly ever done for colors
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Phong Shading

linearly interpolating surface normal across the
facet, applying Phong lighting model at every
pixel
» Same input as Gouraud shading
* Pro: much smoother results
» Con: considerably more expensive

Not the same as Phong lighting
¢ Common confusion
* Phong lighting: empirical model to calculate illumination at
a point on a surface
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Phong Shading

Linearly interpolate the vertex normals
- Compute lighting equations at each pixel

> Can use specular component
#lights

Itotal = kaIambient + 2 Ii(kd (Il' ll) i kS(V' ri)n"”‘"y)
i=1

N, .
remember: normals used in

diffuse and specular terms

discontinuity in normal’s rate of
change harder to detect
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Phong Shading Difficulties

Computationally expensive

> Per-pixel vector normalization and lighting
computation!

+  Floating point operations required

Lighting after perspective projection
> Messes up the angles between vectors
Have to keep eye-space vectors around

no direct support in hardware
»  But can be simulated with texture mapping
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Shading Artifacts: Silhouettes

Polygonal silhouettes remain

Gouraud Phong
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Interpolate between
AB and AD

Rotate -90°

and color
same point
—

Interpolate between
CD and AD

first portion of the scanline
is interpolated between DE and AC

second portion of the scanline
is interpolated between BC and GH

a large discontinuity could arise
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+ Compute Phong lighting at the vertices and
interpolate lighting values across polygon

Phong shading

> Compute averaged vertex normals

* Interpolate normals across polygon and perform

Phong lighting across polygon
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Rasterization Fragment Processing
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Thursday:

Clipping
A1 due
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