Computer Graphics

University of
British Columbia

Review 2

!- Lines and Curves

sParametric — all coordinates as functions of
common parameter

(xy)=(f,@®), £,(t)

(xy,2)=(f,(u,v), £,(u,v), f5(u,v))

line (1) =x +1(x, =) circle x(0) = rcos(0)

YO =y, +t(y, - 1) y(0) =rsin(6)
te[0]] 6 e[0,27]

43

University of
British Columbia

‘_: Lines and Curves - Implicits

line circle
dy=y, -y,
dx =X, — X,
F(x,y)=(x=x)dy—-(y-y)dx F(x,y)=x"+y°-r’
F(x,y)=0 (x,y) is on line F(x,y)=0 (x,y) is on circle
F(x,y)>0 (x.y) is below line F(x,y)>0 (x,y) is outside
F(x,y)<0 (x.y) is above line F(x,y)<0 (x.y) is inside

F(X, y) = xdy — ydx+ (y,dx — x,dy)

E3

University of
British Columbia

Math Review

Lines and Curves

sExplicit - one coordinate as function of the

others
y="1(x
z=f(xy)
line y=mx+b
(YZ_yl)
=2 L (X=X)+Y,
y (Xfxl)(X)) +Y

circle y=i«/rzfxz

L

University of
British Columbia

Lines and Curves

sImplicit - define as “zero set” of function of all
the parameters

{y):F(xy)=0}
{&y,2):F(xy,2)=0}

= Defines partition of space

{60 y):F(xy)>0{(x y): F(x y) =0{(x y): F(x,y) <G}

4z

University of

[British Columbia

‘_: Basic Line Drawing

Assume X <X, & line slope absolute value is<1

Line (X, ¥1. Xz, ¥2)
begin

float dx, dy, x, y, slope ; y/.
dx < X, — X,;

dy < ¥, -yl \/]
slope < d%(; 4T

yE
for x from x, to x, do -
begin B Quest_lons:))
PlotPixel (x,Round (y)); Can this algorithm use integer
y <y +slope ; arithmetic ?
end ; How do we draw other curves?
e [e.g. y=x2 between x, and
¥ N

University of

Copyright 2005 Alla Sheffer

British Columbia

Page 1

Computer Graphics

Math Review

:. Midpoint (Bresenham) Algorithm

Xy > XY, > yland d—:7yl<l

= Assumptions:
y Y2 —

dx X, - X, ﬁV
= ldea: /

=Proceed along the line incrementally

="Have ONLY 2 choices
=Select one that minimizes error (distance to line)

L

University of
British Columbia

Bresenham Algorithm

Distance (error):
7= {(x, y)ax + by + ¢ = xdy - ydx + ¢ = 0} (%21 Y)
d(x,y)=2(xdy - ydx +c)

dxy)
o
o))

= Given pointP =(x,y)d(x, y) is signed distance of p
to 7 (up to normalization factor)

= diszeroforPer

L

University of
British Columbia

!. Midpoint Line Drawing (cont’'d)

= Starting point satisfies d(x, y;)=0
= Each step moves right (east) or upper right
(northeast)
= Signof d(z+1,y+% indicates if to move
east or northeast
M)

]

(, y@ =

43

University of
British Columbia

:. Midpoint Line Algorithm (version 1)
Line (X;, Y5, X5, ¥,)

begin

int x,y,dx,dy,d;

HE Wih Yy < Vs

X =X =Xy = Y=Y

PlotPixel (X, y);
while (x < x,) do
d = (2x+2)dy -2y +1)dx +2c;// 2((x +1)dy - (y +.5)dx +c)
if (d<0) then
begin
X< x+1;
end ;
else begin
X< x+1;
ye y+1;
end ;
PlotPixel (x,y);

1: Triangulation

= Convex polygons easily
triangulated

= Concave polygons present
a challenge

= Convexity - formal definition:
Object S is convex iff for any two points
P,QeS, tP+(1-t)Qc S, te[0]

40

University of
British Columbia

Copyright 2005 Alla Sheffer

— o
w end ; 9;
University of
PBritish Columbia bresenham

Flood Fill Algorithm

[

= Input
= polygon P with rasterized edges
= P =(x,y) € P point inside P

4o
\

University of
British Columbia

Page 2

Computer Graphics

* Scanline Algorithm

= Observation: Each
intersection of straight line
with boundary moves it
from/into polygon

= Detect (& set) pixels inside
polygon boundary (simple
closed curve) with set of
horizontal lines (pixel apart)

=3

University of
British Columbia

* Modern Rasterization

= Define a triangle from implicit edge

equations:

(0000 0000000000000000000000000c0c0ccccoccess

[€)0 9000 ¢ XXX)

¢ LS X XXX XXX)]

E XXX XXX ;

¢ e J

& = ;

¢ Y,]

¢)]

[€)]

[€)

¢)]

[€)

¢)]

¢)]

[€)

¢)
Exfess)
3 "":%, XX]
[€ XLXXX)

[€ LLXXX)]
OO0 0000000000000000000000000000000000000]

University of
ritish Columbia

* Computing Barycentric Coords

= combining p- % p, & p

L

p C, +¢C, C, +¢C,
! d; dy
R = P+——-F
d,+d, d, +d,
b by
P =) P,=—2 P,+—1 P,
¢ Pr "Thb, b, !

& mgives

-G d; P, + d, P, [+ & b, P, + b R
c,+¢,d, +d, d,+d, c,+C,\ b +b, b, +b,

University of

[British Columbia

Copyright 2005 Alla Sheffer

Math Review

* Edge Walking

for (y=yB; y<=yT; y++) {
for (X=xL; X<=xR; Xx++)

setPixel(x,y);
xL += DxL;
XR += DxR;
Yr A\ o
l_/(
yB /—J X X AX R
AX L L R
University of

British Columbia

* Barycentric Coordinates

= Area

A::%-Eﬂazxﬁﬁ%

= Barycentric coordinates
a = AF,ZF,3P A a,= Apaplp /A,
a3 = Appp !l A

P=a/P +a,P, +a,P, |:>3

University of

[ritish Columbia

Cohen-Sutherland Algorithm (cont'd)

0101 0100 0110
A

0001 H{R0000 0010

E
1001 1000 \.1010
B

AB—CB— DB — DE

University of
British Columbia

Page 3

Computer Graphics

C-S Algorithm for convex polygons — full version|

C-5-Clip(POlY = Py Py Koo X Yo Vo) ||_DIE | i | 0
fori=1ton C, «< code (R); Y

i < >
if ((C, and C,and..and C,) !=0) then return; g ;’>;’m")}:<};,m"
if ((C, or Cyor..or C,) ==0) then draw(poly); 3 X>)§n": X;)g":
else 4 X<Xsin X2Xin

fori=1tonif (OutsideWindow(P,)) then
begin
Edge <= Window boundary of leftmost non - zero bit of C;;

P, < P, P nEdge;/*if no intersection return P, */

P, < P, P, nEdge;/*if no intersection return P, */

if (Py ==Pand B, ==PR.)
C-S-Clip(Py,-.s Pys Pgseees Py X+ Xrvaxs Yiins Yimax)

elseif (P_,; = P, ,)/*no intersection, or exactly on the end - vertex */
C-S-Clip (P, Pty PissPrsseess Py X X i Yoo)3

elseif (P,;,; == P,,,;)/*no intersection, or exactly on the end - vertex */

El cs-cip(r..R.A

110 Priaresr P X Xmaxs Yo Yimax)

else
Univer] CS=ClID(Ro,es Pt Py s P P X X Yoo Yoo)3
Pritish Cl end

!- BSP Trees

1 £ | £
(\'

= Convention: Right

sibling in N, direction
/\ = BSP Tree is view

™ independent

= Constructed using only
[4 | / object geometry

\ = Can be used in hidden
2 i surface removal from
multiple views
How to choose what is
visible for given view?

5%

X

™~

43

University of
British Columbia

Transparency/Object Buffer

= A-buffer - extension to Z-buffer

= Save all pixel values

= At the end — have list of polygons &
depths (order) for each pixel

= Simulate transparency by weighting
different list elements

40

University of
British Columbia

Math Review

!- Back Face Culling (object space)

= In closed polyhedron you

Z don't see object “back”
n faces
" = Assumption
= Normals of faces point out
from the object
%

L

University of
British Columbia

!. Z-Buffer

ZBuffer(Scene)
For every pixel (Xx,y) do PutZ(x,y,MaxZ);
For each polygon P in Scene do
Q := Project(P);
For each pixel (x,y) in Q do
z1 := Depth(Q.x,y);
iT (z1<GetZ(x,y)) then

Putz(x,y,z1);
PutColor(x,y,Col(P));
end;
end;
end;

—, = Questions: How to compute Project(P) &
% Depth(Q,x,y)?

University of

[British Columbia

:- Light Sources

= Point source
= light originates at a point
= Rays hit planar surface at different
angles
= Parallel source
= light rays are parallel
= Rays hit a planar surface at identical 12%
angles
= May be modeled as point source at
=3 infinity
5%« Directional light

University of

Copyright 2005 Alla Sheffer

British Columbia

Page 4

Computer Graphics

Math Review

Light

= Light has color
= Interacts with object color (r,g,b)
=1k,
o=l g o)
Ka = (Kar s Kag 1 Kap)
I = (|r, Ig' Ib) = (Iarkar’ Iagkag g Iabkab)

= Blue light on white surface? t?;

=3 = Blue light on red surface?

University of
British Columbia

Diffuse Reflection

= lllumination equation is now:

I= 1k, +1,kg(N-L) = 1, + 1k, cos @

-, - point/parallel source’s intensity
= K, - surface diffuse reflection coefficient

L

> = Can we locate light source from shading?

University of

Specular Reflection

= Shiny objects (e.g. metallic) reflect light in
preferred direction R determined by surface
normal N. L N
0le

R
\

= Most objects are not ideal mirrors - reflect in
the immediate vicinity of R

43

University of
British Columbia

!- Flat Shading

= lllumination value depends only on polygon
normal
= each polygon colored with uniform intensity

= Not adequate for polygons approximating
smooth surface

= Looks non-smooth

= worsened by Mach bands
effect

40

University of
British Columbia

Copyright 2005 Alla Sheffer

British Columbia

lllumination Equation

= For multiple light sources:

|
=1k + 25 (ke (N L) 4k (R, V)T
P p

= d,- distance between surface and light source
+ distance between surface and viewer
(Heuristic atmospheric attenuation)

[93

University of shadingmodel

[British Columbia

4z

Gourard Shading

I

= Polyhedron - approximation of smooth surface

= Assign to each vertex normal of original surface
at point

= If surface not available use estimate normal

= Compute illumination intensity at vertices using
those normals

= Linearly interpolate vertex intensities over
interior pixels of polygon projectior

nl n3

4o

University of
British Columbia

Page 5

Computer Graphics

Phong Shading

= Interpolate (in image space) normal vectors
instead of intensities

= Apply illumination equation for each interior
pixel with its own normal

n,=an +1-a)n, ng=a,n, +1-a,)n,

scanline Y=y

n(x,y) = a,;n, +(1—a3)n5n3
c(x,y) = HI(n(x, y))

L

University of
British Columbia

* Example Texture Map

glTexCoord2d(4, 4);
glVertex3d (x, y, z);

glTexCoord2d(1, 1);
glVertex3d (x, y, z);

University of

[British Columbia

Mapped Testure

L

* MIP-mapping

without with

University of

[British Columbia

Copyright 2005 Alla Sheffer

Math Review

* Texture Mapping

(u, v) parameterization in

University of OpenGL

British Columbia

i Texture Mapping

sTexture coordinate interpolation
= Perspective foreshortening problem
= Also problematic for color interpolation, etc.

University of

[ritish Columbia

Volumetric Texture - Principles

= 3D function p

" P =pxY.2)
= Texture Space — 3D space that holds the texture
(discrete or continuous)

= Rendering: for each rendered point P(x,y,z)
compute p(x,y,z)

= Volumetric texture mapping function/space
transformed with objects

University of
British Columbia

Page 6

Computer Graphics

Texture Parameters

= In addition to color can control other
material/object properties

= Reflectance (either diffuse or specular)
= Surface normal (bump mapping)

= Transparency

E=3 . Reflected color (environment mapping)

University of
British Columbia

Math Review

University of

Copyright 2005 Alla Sheffer

British Columbia

Environment Mapping: Cube Mapping

= 6 planar textures, sides of cube

= point camera in 6 different directions, facing
out from origin

Page 7

