University of
British Columbia

Review 2

i Lines and Curves

sEXplicit - one coordinate as function of the

others
y=1(X)
z="1(XYy)
line y =mx+b
_(yz_yl) .
y_(XZ_Xl) (X=X)+Y,
circle y:i r2_X2

University of
British Columbia

i Lines and Curves

sParametric — all coordinates as functions of
common parameter

(X y) = (1,(t), 1,(1))
(%Y, 2) = (1,(u,v), T,(U,V), T5(u,v))

line x(t) =x +t(X, —X) circle x(8) =rcos(9)

y(t) =y, +1(y, — ¥1) y(0) = rsin(6)
te[0]] 0 €[0,2r]

University of
British Columbia

i Lines and Curves

simplicit - define as “zero set” of function of all
the parameters

1Y) F(x y)=0}
1% Y.2):F(xy,2)=0}

= Defines partition of space

1% Y)-F(Xy) > 03,) - F(x y) =0r{(x, y) - F(x,y) <O}

University of
British Columbia

i Lines and Curves - Implicits

line circle

dy: Yo=Y

dx =X, — X
F(X, y)=(X=x)dy—(y—-y)dx F(x,y)=x*+y>—r?
F(X,y)=0 (x,y)is on line F(x,y)=0 (xy)is on circle
F(x,y)>0 (x,y) is below line F(x,y)>0 (x,y) is outside
F(X,y)<0 (x.y) is above line F(x,y) <0 (X,y) is inside
F (X, y) = xdy— ydx+ (y,dx — x,dy)

University of
British Columbia

Basic Line Drawing

Assume X, <X, & line slope absolute value is <1

University of
British Columbia

Line (X, Y5, X5, Y,)
begin

float dx, dy, x, vy, slope ;
dx < X, — X;;

dy <y, - Y

slope < d%(;

Y=

for x from x, to x, do

begin
PlotPixel (x, Round (y));
y < y + slope ;

A
L
)

N
&/

N\ N
\ \/
A 0N

[X

N\
D
UV

Questions:

Can this algorithm use integer
arithmetic ?

How do we draw other curves?

X

e.g. y=x? between x, and

Midpoint (Bresenham) Algorithm

= Assumptions:

X, > X.,Y, > y,and B _Yem ¥ g

= |[dea:

£ s

L L
WL g
i s
University of
British Columbia

%

A
\4

dx X, — X

&/

AN
%
\

O/

e

M\

AN
N

— N

"Proceed along the line incrementally

"Have ONLY 2 choices
=Select one that minimizes error (distance to line)

i Bresenham Algorithm

Distance (error):

r={(x,y)ax + by + ¢ = xdy — ydx + ¢ =0} (X2, ¥2)
d(x,y)=2(xdy - ydx +c)

dx.y)
é

(Xl’ yl) (X, y)

= Given pointP :(x, y),d(x, y) IS signed distance of p
to 7 (up to normalization factor)

" diszeroforPer

University of
British Columbia

i Midpoint Line Drawing (cont’d)

= Starting point satisfies d(x, y,)=0
= Each step moves right (east) or upper right

(northeast)

= Signof d(z+1,y+3) indicates if to move

east or nort

neast

D

University of
British Columbia

A\

51 Yi

)

Midpoint Line Algorithm (version 1)

Cine (Xy, Yi2 Xy, Y,)

begin

int x,y,dx,dy,d;

X < X, ; Yy < VY,

dx < X, — X, ; dy < vy, —VY,;

PlotPixel (x,Vy);

while (x < x,) do
d =(2x+2)dy -QCy+21dx +2c;//12((x+21)dy -(y +.5)dx +¢c)
if (d <0) then

begin
X< x+1;
e (%0)
else begin A L
X< X+1; NIE \7j
y< y+1; Q 4}43 D
=4 PlotPixel (x,Yy); (X1’ Y, =
ey (end
W lend (?3

University of

British Columbia bresenham

i Triangulation

= Convex polygons easily
triangulated

= Concave polygons present
a challenge

= Convexity - formal definition:

Object S Is convex iff for any two points
P,QeS, tP+(1-t)Qc S, te[01].

tP+(1-1)Q _e

P./Q

= 8 |
o

=
'.= B
- | E
-
=

University of
British Columbia

‘L Flood Fill Algorithm

= Input
= polygon P with rasterized edges
= P=(Xy) € P point inside P

University of
British Columbia

i Scanline Algorithm

= Observation: Each
Intersection of straight line
with boundary moves it
from/into polygon

= Detect (& set) pixels inside
polygon boundary (simple
closed curve) with set of
horizontal lines (pixel apart)

- 8 |
o

=
'.= B
= K
-
=

University of
British Columbia

i Edge Walking

for (y=yB; y<=yT; y++) {
for (X=XL; X<=xR; X++)

setPixel(X,y);
xL += DxL;
XR += DxR;
¥ Yt < /
N

University of
British Columbia

Modern Rasterization

= Define a triangle from implicit edge
equations:

’-{“ '”‘f ...
000
University of

British Columbia

* Barycentric Coordinates

s Area

A=Z
2

= Barycentric coordinates

RP,xPP,

a = AP2P3P A&, = AP3P1P [A,
d; = APleP [A
P=aP +a,P, +a,P, |:>3

University of
British Columbia

Computing Barycentric Coords

= cOmbining p-_% p, 4 p
Pl

P = d, P, +LP3
d,+d, d, +d,
< Pr = b2 2+LP1
Pr b, +b, b, +b,
oS o= giVES

po_C | G p, G pl G [D 5 B p
c,+c,\d,+d, * d,+d, °) c+c,\b+b, * b +b,
£ 9 1T b2 \ M1 1T Y2 1 T2 \ ML T 1 M2

L3RRl
Wl e/

University of
British Columbia

Cohen-Sutherland Algorithm (cont’d)

AB—CB— DB— DE

University of
British Columbia

d

| C-S Algorithm for convex polygons — full version
C-S-C“p(pOIy = PO" " P Xmin + Xmax » Ymin» Ymax) b|t 1 0
fori=1ton C; < code (P,); I.

if ((C, and C,and...and C) !=0) then return; 1 Y= Yn yiym'“

if ((C, or C,or...or C,) ==0) then draw(poly); 2 e Y=

| 0 1 n/ — poly) 3 X>Xn‘BX szmgx
else _ -
for i =1to n if (OutsideWindow(P,)) then 4 X< X =Y
begin

£

'-:’_1.1_.'
R'\.

Univer
British C

Edge <= Window boundary of leftmost non - zero bit of C;;

P_.; < P_., P Edge;/*if nointersection return P_, */

P.,<PP

i,i+1 i

If (i-1,i — P and I:)||+1 — |+1)
C-S_(:IIp(F)O' 'Pll’P|+l’ ’Pn’ min ? max’ymln’ymax)
else if (P_,; == P_;)/*nointersection, or exactly on the end - vertex */

C-S-Clip(PFys Bty PisaPoasess Pos Xinin s Xiax s Yimin» Yinax)
else if (P,;,, == P.;)/*no intersection, or exactly on the end - vertex */
C-S-Clip(Fy,es Py By P By X s Xinas Yinin s Yo)
else
C-S-Clip(Ryees Pys By Bias g By X s Xonas Yinin s Yinax)
end

., N Edge; /*if no intersection return P, */

i+1

Back Face Culling (object space)

= In closed polyhedron you
don’t see object “back”
faces

= Assumption

= Normals of faces point out
from the object

£ s

.
L3RRl
Wl e/

University of
British Columbia

i BSP Trees

= Convention: Right
sibling in N, direction

= BSP Tree is view
Independent

= Constructed using only
object geometry

s Can be used Iin hidden
surface removal from
multiple views

= How to choose what is
visible for given view?

University of
British Columbia

/Z-Buffer

ZBuffer(Scene)
For every pixel (X,y) do PutZ(x,y,MaxZ);
For each polygon P In Scene do
Q = Project(P);
For each pixel (x,y) In Q do
z1 = Depth(Q.X,y);
IT (z1<GetZ(X,y)) then
PutZz(x,y,zl);
PutColor(x,y,Col(P));
end;
end;
end;

— Questions: How to compute Project(P) &
== Depth(Qxy)?

£ SR
‘x,»-’
University of
British Columbia

i Transparency/Object Buffer

s A-buffer - extension to Z-buffer
= Save all pixel values

= At the end — have list of polygons &
depths (order) for each pixel

= Simulate transparency by weighting
different list elements

University of
British Columbia

i Light Sources

= Point source
= light originates at a point

= Rays hit planar surface at different
angles

= Parallel source

= light rays are parallel

= Rays hit a planar surface at identical QZ%
angles

= May be modeled as point source at
Infinity

= Directional light

University of
British Columbia

i Light

University of
British Columbia

Light has color

Interacts with object color (r,g,b)
| =1_K
I, =(

a ar’lag’lab)

k — ((ar’kag 1 kab)

I_(Ir’ g’ b) (Iar ar? ag ag’ ab ab)

a

Blue light on white surface?
Blue light on red surface?

i Diffuse Reflection

= lllumination equation Is now:

| = Ik, + 1k (N-L) = Ik, + 1 k, cos@

= - point/parallel source’s intensity
= K, - surface diffuse reflection coefficient

= Can we locate light source from shading?

University of
British Columbia

i Specular Reflection

= Shiny objects (e.g. metallic) reflect light in
preferred direction R determined by surface
normal N. N

06

R
Vv

= Most objects are not ideal mirrors - reflect in
the immediate vicinity of R

University of
British Columbia

i lllumination Equation

= For multiple light sources:

I—Ik+z (k(N L) +k (R, -V)")

= d - distance between surface and light source
+ distance between surface and viewer
(Heuristic atmospheric attenuation)

@3

University of shadingmodel
British Columbia

p= 2

=

F

'.= B

o z o E
=

&

i Flat Shading

= lllumination value depends only on polygon

normal
= each polygon colored with uniform intensity

= Not adequate for polygons approximating
smooth surface
s Looks non-smooth

= worsened by Mach bands
effect

University of
British Columbia

i Gourard Shading

= Polyhedron - approximation of smooth surface

= Assign to each vertex normal of original surface
at point

= If surface not available use estimate normal

= Compute illumination intensity at vertices using
those normals

= Linearly interpolate vertex intensities over
Interior pixels of polygon projectior
nl n3

University of
British Columbia

i Phong Shading

= Interpolate (in image space) normal vectors
Instead of intensities

= Apply illumination equation for each interior
pixel with its own normal

N

n,=a,n +1-a;)n, n.=a,n, +(1—-a,)n,

T . scanline Y=y

(X,Y)

n(x,y) = a;n, +(1—a3)n5n3
c(x,y) = Hl(n(x, y))

University of
British Columbia

* Texture Mapping

(u, v) parameterization in
OpenGL

University of
British Columbia

i Example Texture Map
(4,0) (4,4)

|
glTexCoord2d(4, 4); B 1
glVertex3d (X, y, 2); - —
Texture\ (0,0) Chject /60,4) Viapped Texdure

(1,0) @n
|

glTexCoord2d(1, 1); - -

glVertex3d (X, y, 2);
-~ Texture (O O) Object Xé 1) Mapped Texture

University of
British Columbia

* Texture Mapping

= [exture coordinate interpolation
= Perspective foreshortening problem
= Also problematic for color interpolation, etc.

University of
British Columbia

i MIP-mapping

with

without

0

i
il __.- N

N

University of
British Columbia

Volumetric Texture - Principles

= 3D function p

= P =pXY,2)
= Texture Space — 3D space that holds the texture
(discrete or continuous)

= Rendering: for each rendered point P(x,y,z)
compute p(x,),z)

= Volumetric texture mapping function/space
transformed with objects

University of
British Columbia

i Texture Parameters

= In addition to color can control other
material/object properties

= Reflectance (either diffuse or specular)

= Surface normal (bump mapping)

= [ransparency

University of
British Columbia

Environment Mapping: Cube Mapping

= 6 planar textures, sides of cube

= point camera in 6 different directions, facing
out from origin

) (R ”“'-'“J%M.
£ !

i H-". ia}“ 1"'{;
; @ﬂ 77 u;axwﬂ:-ﬁ

l

University of
British Columbia

