Notes

= Drop-box is no. 14 - You can hand in your
assignments

= Assignment O due Fri. 4pm
= Assignment 1 is out

= Office hours today 16:00 — 17:00, in lab or in
reading room

a3

University of
British Columbia

!. Reminder

= Linear transformation — combinations of
= Shear, scale, rotate, reflect

= Affine transformation - Add translations
= Closed under composition

= Use homogeneous coordinates to keep in

matrix form
= General forms:
S cosa sina 1

x
=3 s, —sina cosa 1

University of
British Columbia

Clarification

= Why does this matrix transform between

frames?
U=uX-+uY+uZ e Vo W
V =y, X +V,Y +v,Z R=lu, vy W
W =w, X +w,Y +w,Z u v, w,
a
vuvw—[ﬂ S>v=aU+pV +W =
Y

=alu X +u,Y +U,Z)+ B X +v,Y +,Z)+ (X +w,Y +w,Z)=

= (ot + 0+)X+ oy + 0, + 0, Y+ (a, + BV, + 0,)Z = Vi,
u v, w\a au, + BV, + W,

Rvu\,w=[uy vy wy][ﬁ'}={auy+ﬁ\/y+my}

uov, wly) Lau s, eom,

z 2 z

e

University of
British Columbia

University of
British Columbia
Chapter 4 -
* Reminder
|
Transformations
Clarification

= Why is this a rotation matrix? R:(

v, cosa—v,sina) (v,)) 2
Rvev=| " o| *|=vicosa+Vv:cosa=cosalv
v, sing+v, cosa) (v,

1 0
vveR?3ab s.t.v:a(J+b(j
0 1
{1} {Oj {cosaj (—sinaJ
Rv=aR| [+bR| |=a| . +b) N
0 1 sina cosa) -,

cosa —sina
sina cosa

s

University of
[British Columbia WL o
=
University of
British Columbia
* Chapter 5:

" Transformations- Transforming

Normals, Hierarchies and OpenGL,
Assignment 1

University of
British Columbia

* Transforming Normals
|

,_:| Computing Normals

= polygon:
N R
4 N =(P,~P)x(P,~R)
R P,

= assume vertices ordered CCW when viewed
from visible side of polygon
= normal for a vertex

= used for lighting N
= supplied by model (i.e., sphere),
or computed from neighboring polygon:

s

University of
British Columbia

,_: Transforming Normals

= What is a normal?

= Vector
= Orthogonal (perpendicular) to plane/surface

= Do standard transformations preserve
orthogonality?

s

University of
British Columbia

Planes and Normals

= Plane - all points where N-P =0

Finding Correct Normal Transform

= transform a plane

P PI: MP Given M,
N N'=QN findQ
N T P'=0 stay perpendicular
(QN)T (MP) =0 substitute from above
NTQ"MP =0 (AB)" =BTAT
QT M =1 N'P=0
=3 (4)T Normal transformed by
@ Q=M transpose of the inverse of the
University of modeling transformation

British Columbia

X A

B

p=|Y|N=
z C
1 D
= Implicit form
Plane=A-x+B-y+C-z+D
£:3
Uni?s;yol
[British Columbia
University of

British Columbia

* Transformations in OpenGL

!. Transformations in OpenGL

glMatrixMode(GL_MODELVIEW);
glLoadldentity();

glBegin(GL_LINE_LOOP);
glVertex2f(0,0);
glVertex2f(2,0);
glVertex2f(2,2);
glVertex2f(1,3);
glVertex2f(0,2);

glEnd();

DrawHouse()

O —,
-

University of
British Columbia

Transformations in OpenGL

= An easier way to do the same thing....

glMatrixMode(GL_MODELVIEW);
glLoadldentity();

glTranslatef(3,1,0);
glScale(2,2,2);

DrawHouse();

s

University of
British Columbia O

!- Composing Transformations

suppose we want Rotate(z,-90) Translate(2,3,0)

—

L

P, = Rot(z,-90) P, Ry, =Trans(2,3,0) P,

6

Ry =Trans(2,3,0)Rot(z,-90) R,

University of
British Columbia

!.| Transformations in OpenGL

w obj

GLfloat T[16] ={2,0,0,0, 0,2,0,0,
0,0,2,0 3,1,0,1};

glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(T);

DrawHouse();

s

University of
British Columbia

!.’ Matrix Operations in OpenGL

=2 Matrices:

= Model/view matrix M
= Projective matrix P
sExample:

glMatrixMode(GL_MODELVIEW);
glLoadldentity(); // M=Id

glRotatef(angle, x, y, z); // M= R(a)*Id
glTranslatef(x, y, z); // M= T(x,y,z)*R(c)*Id
glMatrixMode(GL_PROJECTION);
glRotatef(...); // P= ...

b

University of

[British Columbia

Composing Transformations

i

Ry =Trans(2,3,0)Rot(z,-90) B,

= R-to-L: interpret operations wrt fixed coords
= moving object

= L-to-R: interpret operations wrt local coords
= changing coordinate system

= OpenGL (L-to-R, local coords)

My =Trans(2,3,0)-M,,,
glTranslatef(2,3,0),
glRotatef(-90,0,0,1); M, =Rot(z,-90)M,,,
DrawHouse(),

updates current transformation matrix
by postmultiplying

i

University of

British Columbia

!.’ Composing Transformations

Rotate(z,-90) Translate(-3,2,0) in local coords

L

Ry = Rot(z,-90)Trans(-3,2,0) B,

=X glRotatef(-90,0,0,1);
glTranslatef(-3,2,0);
University of draw_house();

British Columbia

Rotation: Changing Coordinate Systems

= same example: rotation around arbitrary

center

University of
British Columbia

Rotation: Changing Coordinate Systems

= rotation around arbitrary center
= Step 2: perform rotation

5.

University of
British Columbia

i Rotation About a Point: Moving Object

rotate about translate p rotate about translate p
pby 6 : to origin origin back
TIPF(RY)

s

T(x,y,2)R(z,O) T(-x,~Y,~2)

University of
British Columbia

!.’ Rotation: Changing Coordinate Systems

= rotation around arbitrary center

= step 1: translate coordinate system to rotation
center

University of

[British Columbia

¢z

i Rotation: Changing Coordinate Systems

= rotation around arbitrary center
= step 3: back to original coordinate system

e

University of
British Columbia

General Transform Composition Rotation About an Arbitrary Axis

= transformation of geometry into coordinate = axis defined by two points
system where operation becomes simpler = translate point to the origin
= typically translate to origin = rotate to align axis with z-axis (or x or y)
= perform rotation
= perform operation = undo aligning rotations

= undo translation

= transform geometry back to original
coordinate system

University of University of
British Columbia British Columbia

T ‘_.’ Transformation Hierarchies
University of

rten columbia = scene may have a hierarchy of coordinate

systems

= stores matrix at each level with incremental

* Transformation Hierarchies transform from parent’s coordinate system
T

= Scene gl’!!} I

University of

[ritish Columbia

‘_.’ Transformation Hierarchies ‘_.| Demo: Brown Applets

http://www.cs.brown.edu/exploratories/
freeSoftware/catalogs/scenegraphs.html

Siten
+ie

rot(z,8) trans(0.30,0,0)
University of University of

[British Columbia British Columbia

Composing Transformations

=OpenGL example

/ N
[\/ glLoadldentity(Q);
i T glTranslatef(4,1,0);
- iL\l 71| glPushMatrixQ;
F[’"‘Al glRotatef(45,0,0,1);
\,‘ ‘1 ‘ glTranslatef(0,2,0);
= Z glScalef(2,1,1);
| il glTranslate(1,0,0);
T-' glPopMatrix();

University of
British Columbia

!.’ Matrix Stacks

= Means of returning to previously-used
coordinate system

= Support several models or model parts
Natural hierarchical structure

= depth of matrix stacks limited in hardware
= typically: 16 for ModelView, 4 for Projection

s

University of
British Columbia

s 11w
-

University of
British Columbia

* Assignment 1
I

Transformation Hierarchies

sMatrix Stack

DrawSquare()
glPushMatrix()
glScale3f(2,2,2)
glTranslate3f(1,0,0)
DrawSquare()
glPopMatrix()

University of
British Columbia

!.’ Transformation Hierarchies

sExample
glTranslatef(x,y,0);
glRotatef(4,,0,0,1);
‘ D DrawBody();
glPushMatrix();

92 glTranslatef(0,7,0);

04 S DrawHead();
Y 'S glPopMatrix();
glPushMatrix();

glTranslate(2.5,5.5,0);
93 glRotatef(#,0,0,1);
DrawUArm();

glTranslate(0,-3.5,0);
[T y glRotatef(6,,0,0,1);
x|l DrawLArm();

glPopMatrix();
... (draw other arm)

University of

[British Columbia

Assignment 1

= Out today, due 4pm Fri Oct 15, 2005
= Start very soon!
= Build dinosaur out of spheres and 4x4
matrices

= think cartoon, not beauty

= Template code - program shell, Makefile
= http://www.ugrad.cs.ubc.ca/~cs314/Vsep2005/

al/al.tar.gz

a:

University of

British Columbia

DINOSAUR CARTOONS

BY CHARLEY PARKER

R
____,——___‘_# e

British Columbia

* Articulated Dino

University of

British Columbia

* Articulated Dino

University of

[British Columbia

* Demo

= Maybe in a couple weeks — Ask prof.
= Can view last years demos of dogs and birds

Advice

= Build then animate one section at a time
= Ensure you're constructing hierarchy correctly
= Use body as scene graph root
= Continue with attached parts
= Finish all required parts before
= Going for extra credit
= Playing with lighting or viewing

e}
w72 o

University of

[British Columbia

University of

[ritish Columbia

More Advice

= OK to use glRotate, glTranslate, glScale
= OK to use glutSolidSphere, or build your own
= where to put origin? your choice
= center of object, range - .5to +.5
= corner of object, range 0 to 1

e

University of
British Columbia

More Advice

= Visual debugging
= Color sphere faces differently
= Draw the current coord system
= Transformations - intuition
= move physical objects around
= play with demos
= Brown scenegraph applets

s

University of
British Columbia

!.| More Advice

= Transitions

= safe to linearly interpolate parameters for
glRotate/glTranslate/glScale

= do not interpolate individual elements of 4x4
matrix!

s

University of

British Columbia

