Computer Graphics

o am)
- o

University of
British Columbia

* Chapter 3

Rendering Pipeline
OpenGL/Glut

!- Rendering

= Goal
= transform computer models into images
= photo-realistic or not
= Interactive rendering
= fast, but limited quality
= roughly follows a fixed patterns of operations
= rendering pipeline
= Offline rendering
= ray-tracing
= global illumination

43

University of
British Columbia

!- The Rendering Pipeline

Geometry Model/View A Perspective -

Database Transform. [H9MNG = rranstorm. [T CliPPIng W‘
Scan 5 Depth . Frame-

Conversion [T&XWrANG = . [~ Blending |= puffer

40

University of
British Columbia

Copyright: Alla Sheffer, UBC, 2005

Rendering Plpeline

3D Graphics

= Modeling
= representing object properties
= geometry: polygons, smooth surfaces etc.
= materials: reflection models etc.
= Rendering
= generation of images from models
= interactive rendering
= ray-tracing
= Animation
= making geometric models move and deform

L

University of
British Columbia

Rendering

= Tasks (in no particular order):

= project all 3D geometry onto the image plane
= geometric transformations

= determine which primitives or parts of primitives are

visible

= hidden surface removal

= determine which pixels a geometric primitive covers
= scan conversion

= compute the color of every visible surface point
= lighting, shading, texture mapping

4z

University of

[British Columbia

:- Geometry Database

Geometry

Database

sGeometry database:

= Application-specific data structure for holding
geometric information

= Depends on specific needs of application

= Independent triangles, connectivity information
etc.

4o

University of
British Columbia

Computer Graphics

!- Model/View Transformation

Model/View
Transform.

Geometry
Database

sModeling transformation:

= Map all geometric objects from a local
coordinate system into a world coordinate
system

=Viewing transformation:

= Map all geometry from world coordinates into
— camera coordinates

University of
British Columbia

!- Perspective Transformation

Geometry
Database

Model/View Lightin _‘Perspective
Transform. gnting Transform.

I}

= Perspective transformation
= Projecting the geometry onto the image plane
= Projective transformations and model/view

transformations can all be expressed with 4x4
matrix operations

43

University of
British Columbia

‘_: Scan Conversion

Geometry
Database

u l\.lq:)at:]t-.'slf/;/:‘(:: .| Lighting Perspective

!

1

Transform.

Clipping T‘
scan | ® Scan conversion

Conversion = Turn 2D drawing primitives (lines,
polygons etc.) into individual pixels
(discretizing/sampling)

= Interpolate color across primitive

= Generate discrete fragments

40

University of
British Columbia

Copyright: Alla Sheffer, UBC, 2005

Rendering Plpeline

!- Lighting

Model/View Ay
Transform. [Lighting

Geometry
Database

aLighting:

= Compute the brightness of every point based on
its material properties (e.g. Lambertian diffuse)
and the light position(s)

= Computation is performed per-vertex

L

University of
British Columbia

!. Clipping

Geometry
Database

Model/View annn Perspective
Transform. || 9NtiNg 1= Transform.

1

Clipping

=Clipping

= Removal of parts of the geometry that fall
outside the visible screen or window region

= May require re-tessellation of geometry

4z

University of

[British Columbia

‘_: Texture Mapping

Geometry Model/View N Perspective .

Database || Transform. [H8hting = o cform. [T CliPPing ZH
\- =Texture mapping

coan L) texturing | = “gluing images onto geometry”

= Color of every fragment is
altered by looking up a new
color value from an image

4o

University of
British Columbia

Computer Graphics

:- Depth Test

Model/View
Transform.

Perspective
Transform.

Geometry |

Dt — Lighting

1

Clipping 2“
=Depth test:

Depth = Remove parts of
R geometry hidden
behind other
geometry
= Perform on every individual fragment
= other approaches (later)

Scan

. Texturin
Conversion [] '© 0

L

University of
British Columbia

!. Blending

sBlending:

= Final image: write fragments to pixels

= Draw from farthest to nearest

= No blending — replace previous color

= Blending: combine new & old values with some
arithmetic operations

= Framebuffer : video memory on graphics board
that holds resulting image & used to display it

43

University of
British Columbia

University of
British Columbia

* OpenGL/GLUT

Copyright: Alla Sheffer, UBC, 2005

Rendering Plpeline

!- Blending
Geometry Model/View . Perspective A
Database Transform. [H9NtNG = rranstorm. [CliPPing -“
Scan . Depth A
Comvasien| Texturing [Test — Blending
W
University of
British Columbia
!. The Rendering Pipeline
Geometry | | Model/View . Perspective L
Database || Transform. [HONtNG = qronctorm. [Clipping =“
Scan N Depth . Frame-
Conversion [~ TeXtUring = . [~ Blending buffer
—_—
University of
[British Columbia
OpenGL

= started in 1989 by Kurt Akeley
= based on IRIS_GL by SGI
= API to graphics hardware

= designed to exploit hardware optimized for
display and manipulation of 3D graphics

= implemented on many different platforms
= low level, powerful flexible
= pipeline processing

= set state as needed

4o

University of
British Columbia

Computer Graphics Rendering Pipeline

!- Graphics State !- Geometry Pipeline
= set state once, remains until overwritten = how to interpret geometry
= gIBegin(<mode of geometric primitives=)
= glColor3f(1.0, 1.0, 0.0) - set color to yellow . mode= GL_TRIANGLE, GL_POLYGON, etc.
= glSetClearColor(0.0, 0.0, 0.2) = dark blue bg
= glEnable(LIGHTO) - turn on light = feed vertices
= glEnable(GL_DEPTH_TEST) > hidden surf. = glvertexf(-1.0, 0.0, -1.0)
= glVertex3f(1.0, 0.0, -1.0)
= glVertex3f(0.0, 1.0, -1.0)
= done
= glEnd()
=2 3
University of University of
British Columbia British Columbia

!. Open GL: Primitives !. OpenGL Example

. glPointSize(float size); = TRIANGLE...
i glLineWidth(float width);
L FaiNTS glColor3f(floatr, float g, float b);
glColor3f(0,1,0);
/“‘ g glBegin(GL_TRIANGLES);
”@"’ ”Bﬂ m: i § glVertex3f(0.0f, 0.5F, 0.0Ff);
::/ ' vz A £ - = b ? -
GL_L!NEEW GLI.IN&E‘!HIP“ GL_LINE_LOOP glvertex3f(~0.5F, -0.5F, 0.0F):

glVertex3f(0.5Ff, -0.5Ff, 0.0F);
@ w v

. . w ™ glEndQ;
N2

o w2 i £

GL_TRIANGLES GL_TRIANGLE_STRIP GL_TAIANGLE_FAN
v v

Pl : .

3 <L [, "m
W ’ : W
’ GL_OUADS GL_QUAD_STRIP GL_POLYGON g

University of University of
British Columbia [British Columbia

!- GLUT: OpenGL Utility Toolkit :- Event-Driven Programming

«The basics. . = main loop not under your control

= VS. procedural
int main(int argc, char **argv)

{ = control flow through event callbacks
glutlnit(&argc, argv); i
glutinitDisplayMode(GLUT_RGB | = redraw the window now
GLUT_DOUBLE | GLUT_DEPTH); = key was pressed
glutlnitWindowSize(640, 480);
glutCreateWindow(“‘openGLDemo"); = mouse moved
g:ut?[iﬁp;ayﬁér:gs ;JrawWorld); = callback functions called from main loop when
glut erunc e);
glClearColor(1,1,1); events occur
glutMainLoop(Q);

= mouse/keyboard state setting vs. redrawing
return 0; // never reached

¢
4o

University of
British Columbia

University of
British Columbia

Copyright: Alla Sheffer, UBC, 2005

Computer Graphics

Rendering Plpeline

OpenGL/GLUT Example

void DrawWorld() {
glIMatrixMode(GL_PROJECTION);
glLoadldentity();
gIMatrixMode(GL_MODELVIEW);
glLoadldentity();
glClear(GL_COLOR_BUFFER_BIT);
angle += 0.05;
glRotatef(angle,0,0,1);

// draw triangle

glutSwapBuffers();

L

University of

British Columbia

GLUT Example

void Idle() {
angle += 0.05;
glutPostRedisplay();

L

University of

GLUT Input Events

// you supply these kind of functions

void reshape(int w, int h);
void keyboard(unsigned char key

, int y);
void mouse(int but, int state, iInt

nt x,
X, Int y);

// register them with glut

glutReshapeFunc(reshape);
glutKeyboardFunc(keyboard) ;
glutMouseFunc(mouseg;

43

University of

British Columbia

Depth buffer

=for visibility
= stores a z-value for every pixel
= smaller z means “closer”

// allocate depth buffer
glutinitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);

// enabling the depth test
glEnable(GL_DEPTH_TEST);

// clearing the depth buffer for each frame
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

E3

University of
British Columbia

Copyright: Alla Sheffer, UBC, 2005

British Columbia

GLUT and GLU primitives

gluSphere(...)
gluCylinder(...)

glutSoIidSﬁhere(
glutWireSphere(.

glutSolidCube(..
glutWireCube(...)

glutSolidTorus(.
glutWireTorus(..

glutSolidTeapot(...)
glotWireTeapot(...)

4z

University of

[British Columbia

GLUT menus

glutCreateMenu(...)
glutSetMenu(...
glutGetMenu
glutDestroyMenu(...)
glutAddMenuEntry(...)
glutAddSubMenug...g
glutAttachMenu(. . .

// Example usage
glutCreateMenu(demo_menu) ;
glutAddMenuEntry('quit™, 1);
glutAddMenuEntry(*'Increase Square Size', 2);
glutAttachMenu(GLUT_RIGHT_BUTTON) ;

4o

University of
British Columbia

Computer Graphics Rendering Plpeline

; Assignment 0

= Programming:

= Experience OpenGL & GLUT

= See “real” models — meshes in OBJ format
= Theory:

= Basic math review

= Description:
http://www.ugrad.cs.ubc.ca/~cs314/Vsep2004/a0/a0.pdf

= Deadline: Sep 23
£23 . Basis for future assignments

University of
British Columbia

Copyright: Alla Sheffer, UBC, 2005

