

Chapter 3

Rendering Pipeline OpenGL/Glut

3D Graphics

- Modeling
 - representing object properties
 - geometry: polygons, smooth surfaces etc.
 - materials: reflection models etc.
- Rendering
 - generation of images from models
 - interactive rendering
 - ray-tracing
- Animation
 - making geometric models move and deform

Rendering

- Goal
 - transform computer models into images
 - photo-realistic or not
- Interactive rendering
 - fast, but limited quality
 - roughly follows a fixed patterns of operations
 - rendering pipeline
- Offline rendering
 - ray-tracing
 - global illumination

Rendering

- Tasks (in no particular order):
 - project all 3D geometry onto the image plane
 - geometric transformations
 - determine which primitives or parts of primitives are visible
 - hidden surface removal
 - determine which pixels a geometric primitive covers
 - scan conversion
 - compute the color of every visible surface point
 - lighting, shading, texture mapping

Geometry Database

- •Geometry database:
 - Application-specific data structure for holding geometric information
 - Depends on specific needs of application
 - Independent triangles, connectivity information etc.

University of British Columbia

Model/View Transformation

- •Modeling transformation:
 - Map all geometric objects from a local coordinate system into a world coordinate system
- •Viewing transformation:
 - Map all geometry from world coordinates into camera coordinates

Lighting:

- Compute the brightness of every point based on its material properties (e.g. Lambertian diffuse) and the light position(s)
- Computation is performed per-vertex

Perspective Transformation

- Perspective transformation
 - Projecting the geometry onto the image plane
 - Projective transformations and model/view transformations can all be expressed with 4x4 matrix operations

Clipping

- Removal of parts of the geometry that fall outside the visible screen or window region
- May require re-tessellation of geometry

Scan Conversion Geometry Database Model/View Transform. Lighting Perspective Transform. Clipping

Scan Conversion

- Scan conversion
 - Turn 2D drawing primitives (lines, polygons etc.) into individual pixels (discretizing/sampling)
 - Interpolate color across primitive
 - Generate discrete fragments

Blending

Blending:

- Final image: write fragments to pixels
- Draw from farthest to nearest
- No blending replace previous color
- Blending: combine new & old values with some arithmetic operations
- Framebuffer: video memory on graphics board that holds resulting image & used to display it

The Rendering Pipeline

OpenGL/GLUT

OpenGL

- started in 1989 by Kurt Akeley
 - based on IRIS_GL by SGI
- API to graphics hardware
- designed to exploit hardware optimized for display and manipulation of 3D graphics
- implemented on many different platforms
- low level, powerful flexible
- pipeline processing
 - set state as needed

Graphics State

- set state once, remains until overwritten
 - glColor3f(1.0, 1.0, 0.0) \rightarrow set color to yellow
 - glSetClearColor(0.0, 0.0, 0.2) → dark blue bg
 - glEnable(LIGHT0) → turn on light
 - glEnable(GL_DEPTH_TEST) → hidden surf.

Geometry Pipeline

- how to interpret geometry
 - glBegin(< mode of geometric primitives>)
 - mode = GL_TRIANGLE, GL_POLYGON, etc.
- feed vertices
 - glVertex3f(-1.0, 0.0, -1.0)
 - glVertex3f(1.0, 0.0, -1.0)
 - glVertex3f(0.0, 1.0, -1.0)
- done
 - glEnd()

Open GL: Primitives

v√—/v7 GL_QUADS

glPointSize(float size); glLineWidth(float width); glColor3f(float r, float g, float b);

....

GL_TRIANGLE_STRIP

GL_QUAD_STRIP

GL_LINE_LOOP

GL_TRIANGLE_FAN

GL_POLYGON

OpenGL Example

TRIANGLE...

```
glColor3f(0,1,0);
glBegin( GL_TRIANGLES );

glVertex3f( 0.0f, 0.5f, 0.0f );
glVertex3f( -0.5f, -0.5f, 0.0f );
glVertex3f( 0.5f, -0.5f, 0.0f );
glVertex3f( 0.5f, -0.5f, 0.0f );
```


University of British Columbia

GLUT: OpenGL Utility Toolkit

The basics...

```
int main(int argc, char **argv)
     glutInit( &argc, argv );
     glutInitDisplayMode( GLUT_RGB
                          GLUT_DOUBLE | GLUT_DEPTH);
     glutInitWindowSize( 640, 480 );
     glutCreateWindow( "openGLDemo" );
     glutDisplayFunc( DrawWorld );
     glutIdleFunc(Idle);
     glClearColor(1,1,1);
     glutMainLoop();
     return 0;
                     // never reached
```


Event-Driven Programming

- main loop not under your control
 - vs. procedural
- control flow through event callbacks
 - redraw the window now
 - key was pressed
 - mouse moved
- callback functions called from main loop when events occur
 - mouse/keyboard state setting vs. redrawing

OpenGL/GLUT Example

```
void DrawWorld() {
    glMatrixMode( GL_PROJECTION );
    glLoadIdentity();
    glMatrixMode( GL_MODELVIEW );
    glLoadIdentity();
    glClear( GL_COLOR_BUFFER_BIT );
    angle += 0.05;
    glRotatef(angle,0,0,1);
    ... // draw triangle
    glutSwapBuffers();
}
```


GLUT Example

```
void Idle() {
     angle += 0.05;
     glutPostRedisplay();
}
```


4

GLUT Input Events

```
// you supply these kind of functions
void reshape(int w, int h);
void keyboard(unsigned char key, int x, int y);
void mouse(int but, int state, int x, int y);

// register them with glut
glutReshapeFunc(reshape);
glutReyboardFunc(keyboard);
glutMouseFunc(mouse);
```


GLUT and **GLU** primitives

```
gluSphere(...)
gluCylinder(...)
glutSolidSphere(...)
glutWireSphere(...)
glutSolidCube(...)
glutWireCube(...)
glutSolidTorus(...)
glutSolidTorus(...)
glutSolidTeapot(...)
glutSolidTeapot(...)
```


Depth buffer

- for visibility
 - stores a z-value for every pixel
 - smaller z means "closer"

```
// allocate depth buffer
glutInitDisplayMode( GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);

// enabling the depth test
glEnable( GL_DEPTH_TEST );

// clearing the depth buffer for each frame
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
```


GLUT menus

```
glutCreateMenu(...)
glutSetMenu(...)
glutGetMenu(...)
glutDestroyMenu(...)
glutAddMenuEntry(...)
glutAddSubMenu(...)

// Example usage
glutCreateMenu(demo_menu);
glutAddMenuEntry("quit", 1);
glutAddMenuEntry("Increase Square Size", 2);
glutAttachMenu(GLUT_RIGHT_BUTTON);
```


University of British Columbia

Assignment 0

- Programming:
 - Experience OpenGL & GLUT
 - See "real" models meshes in OBJ format
- Theory:
 - Basic math review
- Description:

http://www.ugrad.cs.ubc.ca/~cs314/Vsep2004/a0/a0.pdf

- Deadline: Sep 23
- Basis for future assignments