University of
British Columbia

!'_ Chapter 3

Rendering Pipeline
OpenGL/Glut

3D Graphics

= Modeling
= representing object properties
= geometry: polygons, smooth surfaces etc.
= materials: reflection models etc.
= Rendering
= generation of images from models
= Interactive rendering
= ray-tracing
= Animation
= making geometric models move and deform

£ s

L L
WL g
i s
University of
British Columbia

Rendering

s Goal
» transform computer models into images
= photo-realistic or not
= Interactive rendering
« fast, but limited quality
= roughly follows a fixed patterns of operations
= rendering pipeline
= Offline rendering
= ray-tracing
= global illumination

£ s

.
L3RRl
Wl e/

University of
British Columbia

Rendering

= Tasks (in no particular order):

= project all 3D geometry onto the image plane
= geometric transformations
= determine which primitives or parts of primitives are
visible
« hidden surface removal
= determine which pixels a geometric primitive covers
= Scan conversion
= compute the color of every visible surface point
« lighting, shading, texture mapping

£ s

L L
WL g
i s
University of
British Columbia

The Rendering Pipeline

Seomery || oaelirer

Database Transform. Lighting

e ' : Frame-
Conversion [T&XtUrng Blending el

£ s

P
L IRTLE
v - o
University of
British Columbia

i Geometry Database

Geometry

Database

sGeometry database:

= Application-specific data structure for holding
geometric information

= Depends on specific needs of application

= Independent triangles, connectivity information
etc.

University of
British Columbia

i Model/View Transformation

Geometry Model/View

Database Transform.

sModeling transformation:

= Map all geometric objects from a local
coordinate system into a world coordinate
system

=Viewing transformation:

= Map all geometry from world coordinates into
camera coordinates

University of
British Columbia

i Lighting

Geometry Model/View

Database Transform. Lighting

sLighting:
= Compute the brightness of every point based on

Its material properties (e.g. Lambertian diffuse)
and the light position(s)

= Computation is performed per-vertex

University of
British Columbia

i Perspective Transformation

Geometry Model/View Perspective

Lighting

Database Transform. Transform.

s Perspective transformation
= Projecting the geometry onto the image plane
= Projective transformations and model/view

transformations can all be expressed with 4x4
matrix operations

University of
British Columbia

Clipping

Geometry Model/View Perspective

Lighting

Database Transform. Transform. Clipping

=Clipping
= Removal of parts of the geometry that fall
outside the visible screen or window region

= May require re-tessellation of geometry

£ s

L L
WL g
i s
University of
British Columbia

Scan Conversion

Geometry
Database

Model/View

Perspective
Transform.

Transform.

Lighting

Clipping i—

scan | ® Scan conversion

Conversion = Turn 2D drawing primitives (lines,
polygons etc.) into individual pixels
(discretizing/sampling)

= Interpolate color across primitive
E-&-_ = Generate discrete fragments

University of
British Columbia

Texture Mapping

Model/View
Transform.

Perspective
Transform.

Geometry
Database

Lighting

Clipping i—

= [exture mapping
| Scan Texturing | = ~dluing images onto geometry”

Conversion _
= Color of every fragment is

altered by looking up a new
color value from an image

£ s

L L
WL g
i s
University of
British Columbia

Depth Test

Geometry
Database

Model/View
Transform.

| Perspective

Lighting Transform.

Clipping

sDepth test:

Corizceanlrgion Texturing DTeptth = Remove parts of
= geometry hidden

behind other
geometry

= Perform on every individual fragment
3 Y J

.

v = other approaches (later)

Wl e/

University of
British Columbia

Blending

Geometry Model/View
Database Transform.

Lighting

Perspective

| Transform.

Scan

. Texturin
Conversion g

£ s

L L
WL g
i s
University of
British Columbia

Blending

Clipping

i Blending

=Blending:

University of
British Columbia

Final Iimage: write fragments to pixels
Draw from farthest to nearest
No blending — replace previous color

Blending: combine new & old values with some
arithmetic operations

Framebuffer : video memory on graphics board
that holds resulting image & used to display it

The Rendering Pipeline

Seomery || oaelirer

Database Transform. Lighting

Scan : , Frame-
Conversion [] TeXturing Blending buffer

£ s

.
L3RRl
Wl e/

University of
British Columbia

University of
British Columbia

!'_ OpenGL/GLUT

:L OpenGL

= started in 1989 by Kurt Akeley
= based on IRIS_GL by SGI

= API to graphics hardware

= designed to exploit hardware optimized for
display and manipulation of 3D graphics

= Implemented on many different platforms
= low level, powerful flexible
= pipeline processing

= set state as needed

= 8 |
o

=
'.= B
- | E
-
=

University of
British Columbia

i Graphics State

= Set state once, remains until overwritten

= glColor3f(1.0, 1.0, 0.0) - set color to yellow
SetClearColor(0.0, 0.0, 0.2) - dark blue bg
Enable(LIGHTO) = turn on light
Enable(GL _DEPTH_TEST) - hidden surf.

|
Q Q Q

University of
British Columbia

Geometry Pipeline

= how to interpret geometry
=« QlBegin(<mode of geometric primitives>)
= /moade = GL_TRIANGLE, GL_POLYGON, etc.

= feed vertices
= glVertex3f(-1.0, 0.0, -1.0)
= (glVertex3f(1.0, 0.0, -1.0)
= (glVertex3f(0.0, 1.0, -1.0)

= done
= glEnd()

£ s

L L
WL g
i s
University of
British Columbia

Open GL.:

Primitives

s\
ik ov3
vie =2

GL_POINTS

GL_LINEES

il vE

v \/
Il vd

yilk b

GL_TRIANGLES

wh
i
g .
. wT
WAL A
" 7

GL_OUADS

University of
British Columbia

glPointSize(float size);
glLineWidth(float width);
glColor3f(float r, float g, float b);

il
<X,

NG
WM
wi vz

Gl _LINE_STRIFP GL_LINE_LOOP
v W2 wi H‘JL -
w
'll‘ { 5
V3 wE "
GL_TRHIANELE STRIP EL_TRIAMGLE_FaRM
v
Eqi ’
vE wd va
w2 = 5
v
GL_QUAD_STRIF GL_POLYGON

OpenGL Example

= TRIANGLE...

glColor3f(0,1,0);
glBegin(GL_TRIANGLES);

glVertex3f(0.0f, 0.5F, 0.0f);
glVertex3fT(—0-5f -0. 5f 0.0F);
glVertex3f(0.5Ff, -0.5F, 0.0f);

glEnd();

£ s

L L
WL g
i s
University of
British Columbia

GLUT: OpenGL Utility Toolkit

s he basics...

int main(int argc, char **argv)

{

£ s

L L
LSRN
i s
University of
British Columbia

glutinit(&argc, argv);
glutinitDisplayMode(GLUT _RGB |

GLUT_DOUBLE | GLUT_DEPTH);
glutinitWindowSize(640, 480);
glutCreateWindow("openGLDemo");
glutDisplayFunc(DrawWorld);
glutldleFunc(ldle);
glClearColor(1,1,1);
glutMainLoop();

return O; // never reached

i Event-Driven Programming

= main loop not under your control
= VS. procedural

= control flow through event callbacks
« redraw the window now
= key was pressed
= Mouse moved

= callback functions called from main loop when
events occur

= mouse/keyboard state setting vs. redrawing

University of
British Columbia

OpenGL/GLUT Example

void DrawWorld() {

gIMatrixMode(GL_PROJECTION);
glLoadldentity();

gIMatrixMode(GL_MODELVIEW);
glLoadldentity();
glClear(GL_COLOR_BUFFER_BIT);
angle += 0.05;
glRotatef(angle,0,0,1);

// draw triangle
glutSwapBuffers();

£ s

L L
WL g
i s
University of
British Columbia

GLUT Example

void ldle() {
angle += 0.05;
glutPostRedisplay();

£ s

L L
WL g
i s
University of
British Columbia

GLUT Input Events

// you supply these kind of functions

voild reshape(int w, int h);
void keyboard(unsigned char key, Int X, Int y);
void mouse(int but, int state, Int X, Int y);

// register them with glut

glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard) ;
glutMouseFunc(mouse) ;

£ s

L L
WL g
i s
University of
British Columbia

GLUT and GLU primitives

uSphere(...)
uCylinder(...)

gl

gl
glutSolidSphere(...)
glutWireSphere(...)
glutSol1dCube(...)
glutWireCube(...)

gl

utSolidTorus(...)
glutWireTorus(...)

glutSolidTeapot(...)
glotWireTeapot(...)

£ s

L L
WL g
i s
University of
British Columbia

Depth buffer

=for visibility
= stores a z-value for every pixel
= smaller z means “closer”

// allocate depth buffer
glutlnitDisplayMode(GLUT _RGB | GLUT DOUBLE | GLUT _DEPTH);

// enabling the depth test
glEnable(GL _DEPTH _TEST);

// clearing the depth buffer for each frame
glClear(GL_COLOR _BUFFER BIT | GL_DEPTH BUFFER BIT);

£ s

L L
WL g
i s
University of
British Columbia

GLUT menus

glutCreateMenu(...)
glutSetMenu(...)
glutGetMenu(...)
glutDestroyMenu(...)
glutAddMenuEntry(...)
glutAddSubMenu(...)
glutAttachMenu(...)

// Example usage
glutCreateMenu(demo_menu) ;
glutAddMenuEntry(''quit', 1);
glutAddMenuEntry("'Increase Square Size', 2);
glutAttachMenu(GLUT_RIGHT _BUTTON) ;

£ s

L L
WL g
i s
University of
British Columbia

i Assignment O

= Programming:

= Experience OpenGL & GLUT

= See “real” models — meshes in OBJ format
= Theory:

= Basic math review

= Description:
http://www.ugrad.cs.ubc.ca/—cs314/Vsep2004/a0/a0.pdf

= Deadline: Sep 23
= Basis for future assignments

University of
British Columbia

