Computer Graphics

Announcements

= Reminder important dates — still to come
= Assignment 1 due: Oct 14
= Assignment 2 due: Nov 4
= Assignment 3 due:
= Theory: Nov 25
= Programming: Nov 28
= Quiz 1: Oct 20
= Quiz 2: Nov 10
= A1Q3: “Given a line segment S=(P_0,P_1) in 2D
E3 and apoint P, write an algorithm
w = to find if the point is on the line segment.”

University of
British Columbia

!. Rasterizing Polygons/Triangles

= Basic surface representation in rendering
= Lowest common denominator
= Can approximate any surface with arbitrary
accuracy
All polygons can be broken up into triangles
= Guaranteed to be:
= Planar
= Triangles - Convex
= Simple to render
= Can implement in hardware

43

University of
British Columbia

!- OpenGL Triangulation

= Simple convex polygons
= break into triangles, trivial

= gIBegin(GL_POLYGON) ... glEnd() Qﬂ

= Concave or non-simple polygons
= break into triangles, more effort

3 = gluNewTess(), gluTessCallback(), ...

University of
British Columbia

Scan Conversion- Polygons

University of

Chapter 8 British Columbia

1

Scan Conversion (part 2)—
Drawing Polygons on Raster
Display

!. Triangulation

= Convex polygons easily
triangulated

= Concave polygons present
a challenge

= Convexity - formal definition:

Object S is convex iff for any two points
P,QeS, tP+(1-t)QcS, te[01]

University of

[British Columbia

!- Polygon Rasterization
= Assumptions — well behaved
= simple - no self intersections
= simply connected

= (no holes) i
= Solutions
= Flood fill
= Scan line
= Implicit test
Unl?sllyof
British Columbia

2

Copyright 2005, Alla Sheffer, UBC

Page 1

Computer Graphics Scan Conversion- Polygons

!- Formulation !- Flood Fill Algorithm

= Input = Input
= polygon P with rasterized edges = polygon P with rasterized edges
= Problem: Fill its interior with specified color on = P =(xy) P point inside P

graphics display

=3 - =3 / -
R e $
University of University of
British Columbia British Columbia

!. Flood Fill !. Flood Fill

FloodFill (Polygon P,int x,int y, Color C) {
if not (OnBoundary (x,Yy,P) or Colored (x,y,C))
begin

PlotPixel (x,y,C);

FloodFill (P,x+1,y,C);
FloodFill (P,x,y+1,C);
FloodFill (P,x,y-1,C);
FloodFill (P,x-1,y,C);

end ; = Drawbacks?

43

4z

University of University of

British Columbia [British Columbia

‘_: Flood Fill - Drawbacks ‘_: Scanline Algorithm

= Observation: Each
intersection of straight line
with boundary moves it
from/into polygon

= Detect (& set) pixels inside
polygon boundary (simple
closed curve) with set of
horizontal lines (pixel apart)

= How do we find a point inside?

= Pixels visited up to 4 times to check if already
set

= Need per-pixel flag indicating if set already
= clear for every polygon!

3 3
University of Unl?;l;/of
Copyright 2005, Alla Sheffer, UBC Page 2

Computer Graphics

!- Scanline

ScanConvert (Polygon P, Color C)

For y:=0to ScreenYMax do

| < Points of intersections of edges of P with lineY =vy;
Sort | in increasing X order and

Fill with color C alternating segments ;

end;

= Limit to bounding box to speed up
E=3 o Other enhancements....

University of
British Columbia

!- Edge Walking

sScanline is more efficient for specific polygons
— trapezoids (triangles)

scanTrapezoid(X_, Xg. Y. Y. X'+ X'r)

43

University of
British Columbia

‘_: Edge Walking

= Exploit continuous L and R edges

scanTrapezoid(X, , Xg, Yg. Y7, AX| . AXp)

Yr] o
1_/4{
E yB /—/(XR L-A)(R

A, X

University of
British Columbia

Copyright 2005, Alla Sheffer, UBC

Scan Conversion- Polygons

!- Bounding Box

(i Yoin)

X Yo

L

University of
British Columbia

!- Edge Walking

for (y=yB; y<=yT; y++) {
xl = intersect(Y=y,(XL,x’L));
xr = intersect(Y=y,(XR,x’R));
for (x=x1; x<=xl; x++)

setPixel (x,y);
} :
XL X'
Yr 5\ /
\ /
=3 Ve N
= R
University of
[British Columbia

‘_: Edge Walking

for (y=yB; y<=yT; y++) {
for (x=xL; X<=xR; X++)

setPixel(X,y);
XL += DxL;
XR += DxR;
3 R .
h_/é(
E Ye A/X—/(X Xq K—'A)(R
L

University of

British Columbia

Page 3

Computer Graphics

Edge Walking Triangles

= Split triangles into two regions
with continuous left and right edges

1
scanTrapezoid(X, X, Y3, yl,m—m, —)

Pl scanTrapezoid(X,, X,, Y, Y. 1 i)
2 X2 Yo Yo o
e X e
Beessses . as
e I ear - I
T L1)
b b A
pevey o essessen
o Th ot e HH%%H
. N >—§—<>—§—<>—(
Beessssss o
T e o)
: e essas ¢ O
niversi f '
Brﬂlshecil‘uyrﬁbla A i
Modern Rasterization
= Define a triangle from implicit edge
equations:
OOBOEOOOCEOOEOOAEAECEEAOCEEOOCCEOOCCOOO00
C) 95000 ¢ XXX)]
C L XXX) 9.0 ¢)]
E XXX XXX 3
é = ;
C)]
C)]
C)]
C)]
C)]
C)]
C)]
C)
C)]
C)/ g
B e s
- ¢ XX X)]
W< XY)
v [oo'e 00000000000 00000000000000000000000000]
University of
British Columbia

,:‘ Computing Edge Equations

{xl yl}mz_cﬂ A:LX‘B%
Xz yz B 1 B(X1y2 - XzYl) = C(Xz - Xl)
(special case if x, =0)

= Choose C=X,Yy,-X,Y, forconvenience
= ThenA=y,-y,and B=Xx;-X,
= Our original implicit formula

3 = Note — in literature you can find same
= equation multiplied by -1
University of = Changes sides

British Columbia

Copyright 2005, Alla Sheffer, UBC

Scan Conversion- Polygons

!-’ Edge Walking Triangles

slssues
=« Many small triangles
= setup cost is non-trivial
= Clipping triangles produces non-triangles

L

University of
British Columbia

Computing Edge Equations
= Computing A,B,C from (x,, y;), (X, ¥,)

Ax,+By, +C=0
AX,+By,+C=0

= Two equations, three unknowns
= Express A, B in terms of C

s

University of

[British Columbia

Edge Equations

i

= Given Py, P, P,, what are our three edges?
» Half-spaces defined by the edge equations
must share the same sign on the interior
of the triangle
= Consistency (Ex: [P, P,], [P, P,], [P,P.])
» How do we make sure that sign is
positive?
= Test & flip if needed (A=-A, B=-B, C=-C)

a3

University of
British Columbia

Page 4

Computer Graphics

!- Edge Equations: Code

= Basic structure of code:
= Setup: compute edge equations, bounding
box

= (Outer loop) For each scanline in bounding
box...

= (Inner loop) ...check each pixel on scanline:
= evaluate edge equations
= draw pixel if all three are positive

L

University of
British Columbia

!- Edge Equations: Code

// more efficient inner loop
for (int y = yMin; y <= yMax; y++) {

float e0 = a0*xMin + bO*y + cO;

float el al*xMin + bl*y + ci;

float e2 = a2*xMin + b2*y + c2;

for (int x = xMin; x <= xMax; x++) {
if (e0 >0 & el >0 && €2 > 0)

Image[x][y] = TriangleColor;

e0 += a0; el+= al; e2 += a2;

43

University of
British Columbia

!- Triangle Rasterization Issues

= Sliver

40

University of
British Columbia

Copyright 2005, Alla Sheffer, UBC

Scan Conversion- Polygons

Edge Equations: Code

findBoundingBox(&xmin, &xmax, &ymin, &ymax);
setupEdges (&a0,&b0,&c0,&al,&bl,&cl,&a2,&b2,8&c2);

for (int y = yMin; y <= yMax; y++) {
for (int x = xMin; x <= xMax; x++) {
float e0 = a0*x + bO*y + cO;
float el al*x + bl*y + ci;
float e2 = a2*x + b2*y + c2;
if (e0 >0 && el >0 && e2 > 0)
Image[x][y] = TriangleColor;

L

University of
British Columbia

!- Triangle Rasterization Issues

» Exactly which pixels should be lit?
= Pixels inside triangle edges

» What about pixels exactly on the edge?
= Draw - BUT order of triangles matters (it shouldn’t)
= Don't draw - BUT gaps possible between triangles

= Need consistent (if arbitrary) rule

= Example: draw pixels on left or top edge, but not on
right or bottom edge

4z

University of

[British Columbia

Triangle Rasterization Issues

i

= Moving Slivers

m
0908RRRRR3S

4o

University of
British Columbia

Page 5

Computer Graphics

‘:‘ Triangle Rasterization Issues

= Shared Edge Ordering

V

University of
British Columbia

‘:‘ Barycentric Coordinates

= Area

A= [RP. <P,

= Barycentric coordinates
a = Appp IAa, = Aepp A,
a3 = Appp A
P =aP, +a,P, +a,P.
ah+a,k +a;h P3

s

University of

[British Columbia

i Barycentric Coords:Alternative formula

= For point P on scanline:

d,
d, +d,
d, d
- P+—1—P=
d1+d2) 2 d,+d, °

P=P+

(Ps - Pz)

University of

[British Columbia

Copyright 2005, Alla Sheffer, UBC

Scan Conversion- Polygons

Interpolation — access triangle interior

= Interpolate between vertices:

=z

= 1,9,b - colour components

= U,V - texture coordinates

= N,,N,,N, - surface normals
= Equivalent

= Bilinear interpolation

= Barycentric coordinates

L

University of
British Columbia

Barycentric Coordinates

sweighted combination of vertices

P=a-P+a,-P, + a;-P,
a+a,+a,=1

0<a,a,,8,<1 P o0
a,=0
©o1) a,=05
P3
=3 *P a,=1
W P, 010
University of
[British Columbia

Computing Barycentric Coords

= similarly:

=Py g (B P)

b, b,
=@ P p=
(b1+b2) 2+b1+bz 1
%p+ R
b, +b, +b,

University of
British Columbia

Page 6

Scan Conversion- Polygons

Computer Graphics

Computing Barycentric Coords i Computing Barycentric Coords
= combining p-_ % p, & p = thus
c+c, " c+c, °
Py d p P=a-P +a,-P, + a;-F,
P=—2-P+—1-P
d,+d, d,+d, .
. b with
Pe= 2 P, : P a = 4 bl
b, +b, b, +b, C,+C, b +b,
= gives e & & o b
, =
c,+¢C,d,+d, ¢ +¢C, b +h,
a, = C, d,
p-—% [% p, ple-G [P py B p PgHc ditd,
=3 c,+¢,d +d, d,+d, c,+C, (b +h, b, +b, =3
University of Uni?;t.y of
British Columbia British Columbia

Bilinear Interpolation

!- Computing Barycentric Coords !-
= Can verify barycentric properties = Interpolate quantity along L and R edges,
as a function of y
= then interpolate quantity as a function of x

a+a,+a;=1
0<a,a,8,<1
Py
Py P(x.y)
P Pg
y
¥ 3
University of
[British Columbia

43

University of
British Columbia

Page 7

Copyright 2005, Alla Sheffer, UBC

