

Chapter 15

Shadows

Shadows

- Realistic illumination includes shadows cast by objects
- Simple shadow generation methods
 - Z-buffer extension
 - Shadow volumes
- Advanced –ray-tracing& radiosity

Z-Buffer Shadow Generation

- Object is in shadow if not "seen" by light source
- Idea compute visibility from light source to decide if shadowed

Z-Buffer Shadow Algorithm

- Render scene from light-source "viewpoint"
- For each pixel save z depth instead of color
- Render scene from eye view point
- Map every (visible) non-background pixel to light source space (perspective transformation)
- Compare z values
 - If identical pixel illuminated by light source (add light source to its illumination equation)
 - If not, it is shadowed
- Need to repeat rendering & projection for each light source

Properties

- Can shadow ANY scene which can be rendered using Z-buffer
- However -requires separate memory buffer for each light source
- Every polygon rendered
 N+1 times (for N light sources)
 - N views do not need lighting calculations

Shadows from 2 light-sources

Shadow Volumes

- Shadow boundary between illuminated & shades space
- Compute as extrusion of silhouettes along light direction
- Compute intersection of extruded volume with other objects

Shadow volumes circa Leonardo daVinci

Shadow Volumes

Shadow Volumes illustrated (2D)

Algorithm

- For each object and light source compute object silhouette from light source viewpoint
- Extend each silhouette to form semi-infinite volumes
- Feed boundaries into regular Z-buffer as fully transparent polygons
- Front facing shadow polygons cause object behind to be shadowed
- Back facing shadow polygons cancel effect of front facing ones
- Consider vector from viewpoint to point on object point is shadowed if vector intersects more front facing polygons than back facing

Properties

- Object space does not depend on view point
- High complexity per object
- Time function of scene complexity
- Requires modeling methods
 - Silhouette computation
 - Extrusion

