Chapter 14

Geometric Modeling Basics Terminology \& Splines

Geometry

- Mathematical models of real world objects shape
- Boundary representations
- Freeform
- Mesh
- Volumetric representations

- Primitive based
- Voxels
- We will
- Talk about boundary reps

- Focus on curves

Freeform Representation - Curves

- Explicit form: $y=y(x)$

- Implicit form: $f(x, y)=0$
- Parametric form: [x(t),y(t)]
- Example - origin centered circle of radius R :

Explicit :

$y=+\sqrt{R^{2}-x^{2}} \cup y=-\sqrt{R^{2}-x^{2}}$
Implicit :
$x^{2}+y^{2}-R^{2}=0$
Parametric :
$(x, y)=(R \cos \theta, R \sin \theta), \theta \in[0,2 \pi]$

Parametric Curves

- Describe geometry (2D)
- Describe path (2D/3D)
- Typically parametric $C(t)=[x(t), y(t)]$
- Complex shape
- Very complex curves (e.g. poly of high degree)
- Sequence of "simple" curves

Sequence of Curves

- $C_{1}(t), C_{2}(t), . ., C_{n}(t)$
- Each curve $C_{i}(t)$ has parameter domain $t \in\left[t_{i}^{0}, t_{i}^{1}\right]$
- How to connect $C_{i}\left(t_{i}^{1}\right)$ to $C_{i+1}\left(t_{i+1}{ }^{0}\right)$
- End of one segment to beginning of next

Continuity

- $C_{1}(t) \& C_{2}(t), t \in[0,1]$ - parametric curves
- Level of continuity at $C_{1}(1)$ and $C_{2}(0)$ is:
- $C^{-1}: C_{1}(1) \neq C_{2}(0)$ (discontinuous)
- $C^{0}: C_{1}(1)=C_{2}(0)$ (positional continuity)
- $C^{k}, k>0$: continuous up to k-th derivative

- Continuity of single curve defined similarly

Geometric Continuity

- Analytic continuity - too strong a requirement
- Geometric continuity - common curve is geometrically smooth (per given level k)
- $G^{k}, k \leq 0$: Same as C^{k}
- $G^{k} k=1: C_{1}{ }_{1}(1)=\alpha C^{\prime}{ }_{2}(0) \alpha>0$
- $G^{k} k \geq 0$: In arc-length reparameterization of $C_{1}(t)$ $\& C_{2}(t)$, the two are C^{k}

Geometric Continuity

- E.g.

$$
\begin{aligned}
& C_{1}(t)=[\cos (t), \sin (t)] t \in[-0.5 \pi, 0] \\
& C_{2}(t)=[\cos (t), \sin (t)] t \in[0,0.5 \pi] \\
& C_{3}(t)=[\cos (2 t), \sin (2 t)] t \in[0,0.25 \pi]
\end{aligned}
$$

- $C_{1}(t) \& C_{2}(t)$ are $C^{k}\left(\& \mathrm{G}^{k}\right)$ continuous
- $C_{1}(t) \& C_{3}(t)$, are G^{k} continuous (not C^{k})

Splines - Free Form Curves

- Usually parametric

$$
\text { - } C(t)=[x(t), y(t)] \text { or } C(t)=[x(t), y(t), z(t)]
$$

- Description = basis functions + coefficients

$$
\begin{aligned}
& C(t)=\sum_{i=0}^{n} P_{i} B_{i}(t)=(x(t), y(t)) \\
& x(t)=\sum_{i=0}^{n} P_{i}^{x} B_{i}(t) \\
& y(t)=\sum_{i=0}^{n} P_{i}^{y} B_{i}(t)
\end{aligned}
$$

- Same basis functions for all coordinates

Splines - Free Form Curves

- Geometric meaning of coefficients (base)
- Approximate/interpolate set of positions, derivatives, etc..

- Will see one example

Hermite Cubic Basis

- Geometrically-oriented coefficients
- 2 positions +2 tangents
- Require $C(0)=P_{0}, C(1)=P_{1}, C^{\prime}(0)=T_{0}, C^{\prime}(1)=T_{1}$
- Define basis function per requirement

$$
C(t)=P_{0} h_{00}(t)+P_{1} h_{01}(t)+T_{0} h_{10}(t)+T_{1} h_{11}(t)
$$

Hermite Basis Functions

$$
C(t)=P_{0} h_{00}(t)+P_{1} h_{01}(t)+T_{0} h_{10}(t)+T_{1} h_{11}(t)
$$

- To enforce $C(0)=P_{0}, C(1)=P_{1}, C^{\prime}(0)=T_{0}, C^{\prime}(1)=T_{1}$ basis should satisfy

$$
h_{i j}(t): i, j=0,1, t \in[0,1]
$$

curve	$C(0)$	$C(1)$	$C^{\prime}(0)$	$C^{\prime}(1)$
$h_{00}(t)$	1	0	0	0
$h_{01}(t)$	0	1	0	0
$h_{10}(t)$	0	0	1	0
$h_{11}(t)$	0	0	0	1

Hermite Cubic Basis

- Can satisfy with cubic polynomials as basis

$$
h_{i j}(t)=a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}
$$

- Obtain - solve 4 linear equations in 4 unknowns for each basis function

$$
h_{i j}(t): i, j=0,1, t \in[0,1]
$$

curve	$C(0)$	$C(1)$	$C^{\prime}(0)$	$C^{\prime}(1)$
$h_{00}(t)$	1	0	0	0
$h_{01}(t)$	0	1	0	0
$h_{10}(t)$	0	0	1	0
$h_{11}(t)$	0	0	0	1

Hermite Cubic Basis

- Four polynomials that satisfy the conditions

$$
\begin{aligned}
& h_{00}(t)=t^{2}(2 t-3)+1 \quad h_{01}(t)=-t^{2}(2 t-3) \\
& h_{10}(t)=t(t-1)^{2} \quad h_{11}(t)=t^{2}(t-1)
\end{aligned}
$$

Natural Cubic Splines

- Standard spline input - set of points $\left\{P_{i}\right\}_{i=0}^{n}$
- No derivatives
- Interpolate by n cubic segments:
- Derive $\left\{T_{i}\right\}_{i=0}^{n}$ from continuity constraints
- Solve 4n equations

Interpolation (2n equations):

$C_{i}(0)=P_{i-1} \quad C_{i}(1)=P_{i} \quad i=1, . ., n$
C^{1} continuity constraints ($n-1$ equations):
$C_{i}^{\prime}(1)=C_{i+1}^{\prime}(0) \quad i=1, . ., n-1$
C^{2} continuity constraints ($n-1$ equations):
$C_{i}^{\prime \prime}(1)=C_{i+1}^{\prime \prime}(0) \quad i=1, . ., n-1$

Natural Cubic Splines

- Need another 2 equations to reach 4n
- Options
- Natural end conditions: $\quad C_{1}^{\prime \prime}(0)=0, C_{n}^{\prime \prime}(1)=0$
- Prescribed end conditions (derivative available): $\quad C_{1}^{\prime}(0)=T_{0}, C_{n}^{\prime}(1)=T_{n}$

Freeform Representation - Surfaces

Explicit form $z=z(x, y)$ Explicit is a special case of

- Explicit form: $z=z(x, y)$ implicit and parametric form
- Implicit form: $f(x, y, z)=0$
- Parametric form: $[x(u, v), y(u, v), z(u, v)]$
- Example - origin centered sphere of radius R :

Explicit:

$$
z=+\sqrt{R^{2}-x^{2}-y^{2}} \cup z=-\sqrt{R^{2}-x^{2}-y^{2}}
$$

Implicit:
$x^{2}+y^{2}+z^{2}-R^{2}=0$
Parametric:
$(x, y, z)=(R \cos \theta \cos \psi, R \sin \theta \cos \psi, R \sin \psi), \theta \in[0,2 \pi], \psi \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

From Curves to Surfaces - Tensor Splines

- Curve is expressed as inner product of P_{i} coefficients and basis functions

$$
C(u)=\sum_{i=0}^{n} P_{i} B_{i}(u)
$$

- To extend curves to surfaces - treat surface as a curve of curves
- Assume P_{i} is not constant, but a function of second parameter v: $P_{i}(v)=\sum_{j=0}^{m} Q_{i j} B_{j}(v)$

$$
C(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} Q_{i j} B_{j}(v) B_{i}(u)
$$

Tensor Spline Surfaces

University of British Columbia

Bilinear Patches

- Bilinear interpolation of 4 3D points

$$
P_{00}, P_{01}, P_{10}, P_{11}
$$

- surface analog of line segment curve

University of British Columbia

Bilinear Patches

- Given $P_{00}, P_{01}, P_{10}, P_{11}$ associated parametric bilinear surface for $u, v \in[0,1]$ is:

$$
P(u, v)=(1-u)(1-v) P_{00}+(1-u) v P_{01}+u(1-v) P_{10}+u v P_{11}
$$

- Questions:
- What does an isoparametric curve of a bilinear patch look like?
- When is a bilinear patch planar?

