

Geometric Modeling Basics Terminology & Splines

Geometry

- Mathematical models of real world objects shape
 - Boundary representations
 - Freeform
 - Mesh
 - Volumetric representations
 - Primitive based
 - Voxels
- We will
 - Talk about boundary reps
 - Focus on curves

Freeform Representation - Curves

Explicit form: y=y(x)

Explicit is a special case of implicit and parametric form

- Implicit form: f(x,y)=0
- Parametric form: [x(t),y(t)]
- Example origin centered circle of radius R:

Explicit:

$$y = +\sqrt{R^2 - x^2} \cup y = -\sqrt{R^2 - x^2}$$

Implicit:

$$x^2 + y^2 - R^2 = 0$$

Parametric:

$$(x, y) = (R \cos \theta, R \sin \theta), \theta \in [0, 2\pi]$$

Parametric Curves

- Describe geometry (2D)
- Describe path (2D/3D)
- Typically parametric C(t)=[x(t),y(t)]
- Complex shape
 - Very complex curves (e.g. poly of high degree)
 - Sequence of "simple" curves

University of British Columbia

Sequence of Curves

- $C_1(t), C_2(t),..., C_n(t)$
- Each curve $C_i(t)$ has parameter domain $t \in [t_i^0, t_i^l]$
- How to connect $C_i(t_i^1)$ to

$$C_{i+1}(t_{i+1}^{0})$$

End of one segment to beginning of next

 $C_5(t)$

 $C_4(t)$

University of critish Columbia

Continuity

- $C_1(t) \& C_2(t), t \in [0,1]$ parametric curves
- Level of continuity at $C_1(1)$ and $C_2(0)$ is:
 - $C^{-1}:C_1(1) \neq C_2(0)$ (discontinuous)
 - C^0 : $C_1(1) = C_2(0)$ (positional continuity)
 - C^k , k > 0: continuous up to k-th derivative

Geometric Continuity

- Analytic continuity too strong a requirement
- Geometric continuity common curve is geometrically smooth (per given level k)
 - G^k , $k \leq 0$: Same as C^k
 - $G^k k = 1: C'_1(1) = \alpha C'_2(0) \alpha > 0$
 - $G^k k \ge 0$: In arc-length reparameterization of $C_I(t)$ & $C_2(t)$, the two are C^k

Geometric Continuity

• E.g.

$$C_{1}(t) = [\cos(t), \sin(t)] \ t \in [-0.5\pi, 0]$$

$$C_{2}(t) = [\cos(t), \sin(t)] \ t \in [0, 0.5\pi]$$

$$C_{3}(t) = [\cos(2t), \sin(2t)] \ t \in [0, 0.25\pi]$$

- $C_1(t)$ & $C_2(t)$ are C^k (& G^k) continuous
- $C_1(t)$ & $C_3(t)$, are G^k continuous (not C^k)

Splines – Free Form Curves

- Usually parametric
 - C(t)=[x(t),y(t)] or C(t)=[x(t),y(t),z(t)]
- Description = basis functions + coefficients

$$C(t) = \sum_{i=0}^{n} P_i B_i(t) = (x(t), y(t))$$

$$x(t) = \sum_{i=0}^{n} P_i^x B_i(t)$$

$$y(t) = \sum_{i=0}^{n} P_i^{y} B_i(t)$$

Same basis functions for all coordinates

Splines – Free Form Curves

- Geometric meaning of coefficients (base)
 - Approximate/interpolate set of positions, derivatives, etc..

Will see one example

Hermite Cubic Basis

- Geometrically-oriented coefficients
 - 2 positions + 2 tangents
- Require $C(0)=P_0$, $C(1)=P_1$, $C'(0)=T_0$, $C'(1)=T_1$
- Define basis function per requirement

$$C(t) = P_0 h_{00}(t) + P_1 h_{01}(t) + T_0 h_{10}(t) + T_1 h_{11}(t)$$

Hermite Basis Functions

$$C(t) = P_0 h_{00}(t) + P_1 h_{01}(t) + T_0 h_{10}(t) + T_1 h_{11}(t)$$

■ To enforce $C(0)=P_0$, $C(1)=P_1$, $C'(0)=T_0$, $C'(1)=T_1$ basis should satisfy

$$h_{ij}(t):i, j = 0,1,t \in [0,1]$$

curve	C(0)	<i>C</i> (1)	C'(0)	C'(1)
$h_{00}(t)$	1	0	0	0
$h_{01}(t)$	0	1	0	0
$h_{10}(t)$	0	0	1	0
$h_{11}(t)$	0	0	0	1

Hermite Cubic Basis

Can satisfy with cubic polynomials as basis

$$h_{ij}(t) = a_3 t^3 + a_2 t^2 + a_1 t + a_0$$

 Obtain - solve 4 linear equations in 4 unknowns for each basis function

$$h_{ij}(t):i, j = 0,1,t \in [0,1]$$

curve	C(0)	<i>C</i> (1)	C'(0)	<i>C</i> '(1)
$h_{00}(t)$	1	0	0	0
$h_{01}(t)$	0	1	0	0
$h_{10}(t)$	0	0	1	0
$h_{11}(t)$	0	0	0	1

Hermite Cubic Basis

Four polynomials that satisfy the conditions

$$h_{00}(t) = t^2(2t-3)+1$$
 $h_{01}(t) = -t^2(2t-3)$
 $h_{10}(t) = t(t-1)^2$ $h_{11}(t) = t^2(t-1)$

Natural Cubic Splines

- Standard spline input set of points $\{P_i\}_{i=0}^n$
 - No derivatives
- Interpolate by n cubic segments:
 - Derive $\{T_i\}_{i=0}^n$ from continuity constraints
 - Solve 4n equations

Interpolation (2*n* equations):

$$C_i(0) = P_{i-1}$$
 $C_i(1) = P_i$ $i = 1,...,n$

 C^1 continuity constraints (n-1 equations):

$$C_{i}(1) = C_{i+1}(0)$$
 $i = 1,...,n-1$

$$i = 1,...,n-1$$

 C^2 continuity constraints (n-1 equations):

$$C_i''(1) = C_{i+1}''(0)$$
 $i = 1,...,n-1$

$$i = 1,...,n-1$$

Natural Cubic Splines

- Need another 2 equations to reach 4n
- Options
 - Natural end conditions: $C_1''(0) = 0, C_n''(1) = 0$
 - Prescribed end conditions (derivative available): $C_1(0) = T_0, C_n(1) = T_n$

Freeform Representation - Surfaces

Explicit form: z=z(x,y) Explicit is a special case of implicit and parametric form

- Implicit form: f(x,y,z)=0
- Parametric form: [x(u,v),y(u,v),z(u,v)]
- Example origin centered sphere of radius R:

Explicit:

$$z = +\sqrt{R^2 - x^2 - y^2} \cup z = -\sqrt{R^2 - x^2 - y^2}$$

Implicit:

$$x^2 + y^2 + z^2 - R^2 = 0$$

Parametric:

 $(x, y, z) = (R\cos\theta\cos\psi, R\sin\theta\cos\psi, R\sin\psi), \theta \in [0, 2\pi], \psi \in [-\frac{\pi}{2}, \frac{\pi}{2}]$

From Curves to Surfaces – Tensor Splines

• Curve is expressed as inner product of P_i coefficients and basis functions

$$C(u) = \sum_{i=0}^{n} P_i B_i(u)$$

- To extend curves to surfaces treat surface as a curve of curves
- Assume P_i is not constant, but a function of second parameter $v: P_i(v) = \sum_{j=1}^{m} Q_{ij} B_j(v)$

$$C(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} Q_{ij}B_{j}(v)B_{i}(u)$$

Tensor Spline Surfaces

Bilinear Patches

Bilinear interpolation of 4 3D points

$$P_{00}, P_{01}, P_{10}, P_{11}$$

- surface analog of line segment curve

Bilinear Patches

• Given P_{00} , P_{01} , P_{10} , P_{11} associated parametric bilinear surface for $u, v \in [0,1]$ is:

$$P(u,v)=(1-u)(1-v)P_{00} + (1-u)vP_{01} + u(1-v)P_{10} + uvP_{11}$$

• Questions:

- What does an isoparametric curve of a bilinear patch look like?
- When is a bilinear patch planar?

