e
w1 v
- o
University of
British Columbia

* Chapter 12
|

Texture Mapping

Texture Mapping

= Real life objects non
uniform in terms of
color & normal

= To generate realistic
objects - reproduce
coloring & normal
variations = Texture

= Can often replace

complex geometric
details

s

University of

[British Columbia

Color Texture Mapping

= Define color (RGB) for each point on object
surface

= Two approaches
= Surface texture map
= Volumetric texture

Tk

University of

[British Columbia

‘:’ The Rendering Pipeline

Geometry Processing

Model/View N Perspective o
Transform. [1OMNG = 1o nstorm. Clipping

Geometry
Database

l Scan . Depth . Frame-
Conversion [~ TeXturing Test [Blending buffer
Rasterization Fragment Processing

L

University of
British Columbia

Texture Mapping

= increase realism
= lighting/shading models not enough
= hide geometric simplicity
= images convey illusion of geometry
= map a brick wall texture on a flat polygon
= create bumpy effect on surface
= associate 2D information with 3D surface

= point on surface corresponds to a point in
texture

= “paint” image onto polygon

s

University of

[ritish Columbia

Surface texture

= Define texture pattern over (u,v) domain (Image)

= Image — 2D array of “texels”
= Assign (u,v) coordinates to each point on object surface
= For free-form — use inverse of surface function

= For polygons (triangle)
= Inside — use barycentric coordinates
= For vertices need mapping function

University of
British Columbia

‘:‘ Texture Mapping
.“"--,____,\‘_—::::: i

s

University of
British Columbia

Mapping for Triangular Meshes

= Mapping defined by:
= Vertices (3D) mapped to specified (u,v)
locations in 2D

= Each interior point mapped to 2D using
barycentric coordinates I

L

University of
British Columbia

‘:‘ Texture Mapping

(u, v) parameterization in
OpenGL

University of

[British Columbia

Texture Coordinates

= every polygon has object coordinates and
texture coordinates

= object coordinates describe where polygon
vertices are on the screen

= texture coordinates describe texel coordinates
of each vertex

= texture coordinates are interpolated along
vertex-vertex edges

= glTexCoord2f(TYPE coords)
= Other versions for different texture dimensions

a3

University of

[British Columbia

‘:’ Example Texture Map

= Associate (u,v) with each vertex
= Not necessarily same proportions as (X,y,z)

Applied to polygon

University of

[ritish Columbia

Texture Mapping - OpenGL

sTexture Coordinates
= Generation/storage at vertices

= specified by programmer or artist
glTexCoord2f(s, t)
glvertexf(x,y,z)

= generate as a function of vertex coords
= interpolated across triangle (like R,G,B,Z)
(well, not quite...)

a3

University of
British Columbia

* Example Texture Map

t *
¥
LS glTexCoord2d(1,1); z

glVertex3d (-x, Y, z);

©, 1) a.1 L
U A - AN

(0, 0) (1, 0)

glTexCoord2d(0,0);

glVertex3d (-x, -y, -z);

Texture Object

University of

Mapped Texture

British Columbia

* Texture Lookup

= issue:
. \f\(/}ha}]h)appens to fragments with « or v outside the interval

multiple choices:
= cyclic repetition of texture to tile whole surface

glTexParameteri(..., GL_TEXTURE WRAP_S,
GL_REPEAT)

= clamp every component to range [0...1] - re-use color
values from border of texture image

glTexParameteri(..., GL_TEXTURE WRAP_S,
GL_CLAMP) — -

University of

[British Columbia

Texture Mapping

sTexture coordinate interpolation
= Perspective foreshortening problem
= Also problematic for color interpolation, etc.

40

University of

[British Columbia

* Example Texture Map

glTexCoord2d(4, 4);
glVertex3d (x, y, z);

lapped Texdure

glTexCoord2d(1, 1);
glVertex3d (x, y, z);
[=3

Mapped Testure

University of
British Columbia

* Texture Functions

= once have value from the texture map, can:
= directly use as surface color: GL_REPLACE
= throw away old color, lose lighting effects
= modulate surface color: GL_MODULATE
= multiply old color by new value, keep lighting info
=« texturing happens after lighting, not relit
= use as surface color, modulate alpha: GL_DECAL
= like replace, but supports texture transparency
= blend surface color with another: GL_BLEND
= new value controls which of 2 colors to use
= indirection, new value not used directly for coloring

University of

[ritish Columbia

* Perspective - Reminder

= Preserves order
—3 = BUT distorts distances

Trr
University of
British Columbia

.;‘ Texture Coordinate Interpolation

sPerspective Correct Interpolation
=0, B,y
Barycentric coordinates of point P
= u, u, u,: texture coordinates of vertices
= w,, w,w, : homogenous coordinate of vertices

u= @ g/ Wy + Buy/wy + - uy/wy
alw, + B/, + p/w,
B3, Similarly for v

University of
British Columbia

!-’ Reconstruction

Rotx Roty [T i

(image courtesy of Kiriakos Kutulakos, U Rochester)
University of

British Columbia

.;‘ Reconstruction

= How to deal with:
= pixels that are much larger than texels ?
(apply filtering, “averaging”)

= pixels that are much smaller than texels ?
(interpolate)

s

University of
British Columbia

!.’ MIP-mapping

Use “image pyramid” to precompute
averaged versions of the texture B

Without MIP-mapping

University of

‘_:‘ MIP-mapping

without

University of
British Columbia

Pritish Columbia With MIP-mapping

Volumetric Texture

= Define texture pattern over
3D domain - 3D space
containing the object
= Texture function can be
digitized or procedural
= For each point on object
compute texture from point
location in space
= Common for natural
material/irregular textures
=3 (stone, wood,etc...)

University of
British Columbia

Principles

= 3D function p

= p=p(X)2)

= Texture Space — 3D space that holds the texture
(discrete or continuous)

= Rendering: for each rendered point P(x,y,z)
compute p(x,y,2)

= Volumetric texture mapping function/space
transformed with objects

L

University of
British Columbia

* Effects

= Boring Marble
= function boring_marble(point)
X = point.x;
return marble_color(sin(x));
/1 marble_color maps scalars to colors
= Bombing
= Randomly drop bombs of various shapes, sizes
and orientation into texture space (store data in
table)
= For point P search table and determine if inside
=3 shape
== = if s0, color by shape

University of

Effects (cont.)

= Otherwise, color by objects color
= Example:

University of

[British Columbia

‘:‘ Function Noise (cont.)

a1

University of

[British Columbia

British Columbia

!-’ Function Noise

= Noise — return scalar for each P(x,y,z)
= Defined as:
= Initially, for each x,y,zin Z (x, y, Z € N):
H(x,y,z) = d (d - randomly chosen value)
= Retrieval:
= If (x,y,2) are all integers:
= Noise(X,y,z) = H(x,y,z)
= Otherwise:

= Noise(X,y,z) = interpolation of neighboring
H(x.y.z)

s

University of

[ritish Columbia

Function Turbulence

i

function turbulence(p)
t=0;
scale = 1;
while (scale > pixelsize) {
t += abs(Noise(p/scale)*scale);
scale/=2;
}

return t;

a3

University of
British Columbia

s

University of
British Columbia

More Effects

= Marble effect (using turbulence):
function marble(point)
X = point.x + turbulence(point);
return marble_color(sin(x))

a1

University of

British Columbia

Normal — Bump Mapping

= Object surface often not smooth
— to recreate correctly need
complex geometry model

= Can control shape “effect” by
locally perturbing surface normal
= Random perturbation
= Directional change over

region

u
British Columbi

!I Bump Mapping

O'(u)

Lengthening or shortening
O(u) using B(u)

N'(u)

The vectors to the

= ‘new’ surface

ia

Texture Parameters

= In addition to color can control other
material/object properties

= Reflectance (either diffuse or specular)
= Surface normal (bump mapping)

= Transparency

E=3 . Reflected color (environment mapping)

University of
British Columbia

Bump Mapping

h *l‘ 1 f / O(u)
/

Original surface

Bu)

A bump map

!-’ Environment Mapping

= cheap way to achieve reflective effect

= generate image of surrounding

a3

University of
British Columbia

Environment Mapping

= used to model object that reflects
surrounding textures to the eye
= movie example: cyborg in Terminator 2
= different approaches
= sphere, cube most popular

= OpenGL support
GL_SPHERE_MAP, GL_CUBE_MAP

= Others possible too

L

University of
British Columbia

:. Cube Mapping

University of
British Columbia

:. Cube Mapping

= 6 planar textures, sides of cube

= point camera in 6 different directions, facing
out from origin

e

University of
British Columbia

:. Sphere Mapping

= texture is distorted fish-eye view
= point camera at mirrored sphere

= spherical texture mapping creates texture coordinates
that correctly index into this texture map

