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Texture Mapping

= Real life objects non
uniform In terms of
color & normal

= TO generate realistic
objects - reproduce
coloring & normal
variations = Texture

= Can often replace
complex geometric
detalls
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i Texture Mapping

= Increase realism
= lighting/shading models not enough
= hide geometric simplicity
= Images convey illusion of geometry
= map a brick wall texture on a flat polygon
= create bumpy effect on surface
= associate 2D information with 3D surface

= point on surface corresponds to a point in
texture

= “paint” Image onto polygon
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i Color Texture Mapping

= Define color (RGB) for each point on object
surface

= Two approaches
= Surface texture map
= Volumetric texture
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Surface texture

= Define texture pattern over (u,v) domain (Image)
= Image — 2D array of “texels”

= Assign (u,v) coordinates to each point on object surface
= For free-form — use inverse of surface function
= For polygons (triangle)

= Inside — use barycentric coordinates

= For vertices need mapping function
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i Texture Mapping
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Mapping for Triangular Meshes

= Mapping defined by:
= Vertices (3D) mapped to specified (u,v)
locations in 2D

»« Each interior point mapped to 2D using
barycentric coordinates
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* Texture Mapping

0

(u, v) parameterization in
OpenGL
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* Example Texture Map

= Associate (u,v) with each vertex
= Not necessarily same proportions as (X,y,z)

Applied to polygon
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i Texture Coordinates

= every polygon has object coordinates and
texture coordinates

= Object coordinates describe where polygon
vertices are on the screen

= texture coordinates describe texel coordinates
of each vertex

= texture coordinates are interpolated along
vertex-vertex edges

= glTexCoord2f(TYPE coords)
= Other versions for different texture dimensions
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i Texture Mapping - OpenGL

s [ exture Coordinates

= Generation/storage at vertices

= specified by programmer or artist
glTexCoord2f(s,t)
glVertexf(x,y,z)

= generate as a function of vertex coords
= Interpolated across triangle (like R,G,B,Z)
(well, not quite...)
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i Example Texture Map

i 1
LE glTexCoord2d(1,1); bz
glVertex3d (-x, y, 2);
M A - AN
(0, 0) (1, 0) / \\
\_>< gITexCoordZd(0,0),

glVertex3d (-x, -y, -2);
Texture Object Mapped Texture
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i Example Texture Map
(4,0) (4,4)

|
glTexCoord2d(4, 4); B 1
glVertex3d (X, y, 2); - —
Texture\ (0,0) Chject /60,4) Viapped Texdure

(1,0) @n
_|_

glTexCoord2d(1, 1); -
glVertex3d (X, y, 2);
= Texture (O O) Object Xé 1) Mapped Texture
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Texture Lookup

m [SSuUe:

o \f\(/)hag]h)appens to fragments with u or v outside the interval

multiple choices:
= cyclic repetition of texture to tile whole surface

glTexParameteri( ..., GL TEXTURE WRAP S,
GL REPEAT)

= clamp every component to range [0...1] - re-use color
values from border of texture image

glTexParameteri( ..., GL TEXTURE WRAP S,
GL CLAMP)
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Texture Functions

= once have value from the texture map, can:
= directly use as surface color: GL_REPLACE

= throw away old color, lose lighting effects
= modulate surface color: GL_MODULATE

« multiply old color by new value, keep lighting info

= texturing happens after lighting, not relit
= use as surface color, modulate alpha: GL_DECAL

= like replace, but supports texture transparency
= blend surface color with another: GL_BLEND

= new value controls which of 2 colors to use
3 - Indirection, new value not used directly for coloring
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* Texture Mapping

= [exture coordinate interpolation
= Perspective foreshortening problem
= Also problematic for color interpolation, etc.
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* Perspective - Reminder

s Preserves order
= BUT distorts distances
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i Texture Coordinate Interpolation
sPerspective Correct Interpolation
= O B, Y .

Barycentric coordinates of point P
" Uy Uy, U, -

texture coordinates of vertices
= w,, w,w, : homogenous coordinate of vertices
u

@ Uy/Wo + Bty /Wy + 7 uy/w,

a/w, + p/w, +p/w,
= Similarly for v
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Reconstruction
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i Reconstruction

= How to deal with:

« pixels that are much larger than texels ?

(apply filtering, “averaging”)

= pixels that are much smaller than texels ?

(interpolate)
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MIP-mapping

Use “image pyramid” to precompute
averaged versions of the texture

Without MIP-mapping
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‘-L MIP-mapping

with

without
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Volumetric Texture

= Define texture pattern over
3D domain - 3D space
containing the object

= Texture function can be
digitized or procedural

= For each point on object
compute texture from point
location in space

= Common for natural
material/irregular textures

stone, wood,etc...
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Principles

= 3D function p

= P =pXY,2)
= Texture Space — 3D space that holds the texture
(discrete or continuous)

= Rendering: for each rendered point P(x,y,z)
compute p(x,),z)

= Volumetric texture mapping function/space
transformed with objects
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Effects

= Boring Marble
= function boring_marble(point)
X = point.x;
return marble_color(sin(x));
// marble_color maps scalars to colors

= Bombing

= Randomly drop bombs of various shapes, sizes
and orientation into texture space (store data in

table)
= For point P search table and determine if inside
hape
3 o
e =« If 50, color by shape
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Effects (cont.)

= Otherwise, color by objects color
= Example:
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i Function Noise

= Noise — return scalar for each P(x,y,z)

= Defined as:
« Initially, for each x,y,zIin Z (X, y, Z € N):
H(X,y,z) = d (d - randomly chosen value)
= Retrieval:
« If (X,y,2) are all integers:
= Noise(X,y,z) = H(X,y,z)
= Otherwise:

= Noise(X,y,z) = interpolation of neighboring
H(X,Y,z)
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Function Noise (cont.)

___________________________
........................

..........................
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Function Turbulence

function turbulence(p)
t=0;
scale = 1;
while (scale > pixelsize) {
t += abs(Noise(p/scale)*scale);
scale/=2;

}

return t;
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i More Effects

= Marble effect (using turbulence):
function marble(point)
X = point.x + turbulence(point);
return marble_color(sin(x))
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i Texture Parameters

= In addition to color can control other
material/object properties

= Reflectance (either diffuse or specular)

= Surface normal (bump mapping)

= [ransparency
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‘-L Normal — Bump Mapping

= Object surface often not smooth
— to recreate correctly need
complex geometry model

= Can control shape “effect” by
locally perturbing surface normal

= Random perturbation

= Directional change over
region
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* Bump Mapping
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Olu)

Original surface

B(u)
A bump map




0'(u)

Lengthening or shortening
Ofu) using B(u)

N'(u)

_—*‘-

The vectors to the
‘new’ surface
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Environment Mapping

= cheap way to achieve reflective effect
= generate image of surrounding
= map to object as texture
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i Environment Mapping
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used to model object that reflects
surrounding textures to the eye

= movie example: cyborg in Terminator 2

different approaches

= sphere, cube most popular

= OpenGL support
GL_SPHERE_MAP, GL_CUBE_MAP

= others possible too




Cube Mapping

= 6 planar textures, sides of cube

= point camera in 6 different directions, facing
out from origin
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Cube Mapping
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Grace Cathedral Light Probe
©1999 Paul Debevec

rl <
E http://www.debevec.org/Probes
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Sphere Mapping

= texture is distorted fish-eye view
= point camera at mirrored sphere

= Spherical texture mapping creates texture coordinates
that correctly index into this texture map




