University of
British Columbia

!'_ Chapter 12

Texture Mapping

The Rendering Pipeline

Geometry Processing

Model/View
Transform.

Perspective
Transform.

Geometry

Database Lighting Clipping

Scan i Frame-
= . Texturin 8 i '
Conversion 9 ‘ Test i Blending I buffer
Rasterization Fragment Processing
- g]

L3RRl
Wl e/

University of
British Columbia

Texture Mapping

= Real life objects non
uniform In terms of
color & normal

= TO generate realistic
objects - reproduce
coloring & normal
variations = Texture

= Can often replace
complex geometric
detalls

£ s

L L
WL g
i s
University of
British Columbia

i Texture Mapping

= Increase realism
= lighting/shading models not enough
= hide geometric simplicity
= Images convey illusion of geometry
= map a brick wall texture on a flat polygon
= create bumpy effect on surface
= associate 2D information with 3D surface

= point on surface corresponds to a point in
texture

= “paint” Image onto polygon

University of
British Columbia

i Color Texture Mapping

= Define color (RGB) for each point on object
surface

= Two approaches
= Surface texture map
= Volumetric texture

University of
British Columbia

Surface texture

= Define texture pattern over (u,v) domain (Image)
= Image — 2D array of “texels”

= Assign (u,v) coordinates to each point on object surface
= For free-form — use inverse of surface function
= For polygons (triangle)

= Inside — use barycentric coordinates

= For vertices need mapping function

University of
British Columbia

i Texture Mapping

I ’\‘-;_- {
e /
J

University of
British Columbia

- 8 |
o

=
'.= B
= K
-
=

Mapping for Triangular Meshes

= Mapping defined by:
= Vertices (3D) mapped to specified (u,v)
locations in 2D

»« Each interior point mapped to 2D using
barycentric coordinates

PN

vz

| Wi

’ ’JAVJH

#‘;‘; i

i 0

) = T AL

= nw

e =y g

e B 0 SR

”3 b %4 W

Ve "= N VA

L =Y e

R R R LY

- 1 b ay) i

A =5 Nk S..
L A PR o £
e S W = A
== Fﬁ““e' 5@‘- ﬁi i
B = A e o=
B 2V N &0
— RSN w7
: L,,._ VR W%
o NS
L LR T &_\%
e e 5 S
. '.vna“ \sp
- E =
AW
. . Y
University of N

British Columbia

* Texture Mapping

0

(u, v) parameterization in
OpenGL

University of
British Columbia

* Example Texture Map

= Associate (u,v) with each vertex
= Not necessarily same proportions as (X,y,z)

Applied to polygon

University of
British Columbia

i Texture Coordinates

= every polygon has object coordinates and
texture coordinates

= Object coordinates describe where polygon
vertices are on the screen

= texture coordinates describe texel coordinates
of each vertex

= texture coordinates are interpolated along
vertex-vertex edges

= glTexCoord2f(TYPE coords)
= Other versions for different texture dimensions

=
'.= B
= E
-
=

i

L]

= 8 |

University of
British Columbia

i Texture Mapping - OpenGL

s [exture Coordinates

= Generation/storage at vertices

= specified by programmer or artist
glTexCoord2f(s,t)
glVertexf(x,y,z)

= generate as a function of vertex coords
= Interpolated across triangle (like R,G,B,Z)
(well, not quite...)

University of
British Columbia

i Example Texture Map

i 1
LE glTexCoord2d(1,1); bz
glVertex3d (-x, y, 2);
M A - AN
(0, 0) (1, 0) / \\
_>< gITexCoordZd(0,0),

glVertex3d (-x, -y, -2);
Texture Object Mapped Texture

-

University of
British Columbia

i Example Texture Map
(4,0) (4,4)

|
glTexCoord2d(4, 4); B 1
glVertex3d (X, y, 2); - —
Texture\ (0,0) Chject /60,4) Viapped Texdure

(1,0) @n
|

glTexCoord2d(1, 1); -
glVertex3d (X, y, 2);
= Texture (O O) Object Xé 1) Mapped Texture

University of
British Columbia

Texture Lookup

m [SSuUe:

o \f\(/)hag]h)appens to fragments with u or v outside the interval

multiple choices:
= cyclic repetition of texture to tile whole surface

glTexParameteri(..., GL TEXTURE WRAP S,
GL REPEAT)

= clamp every component to range [0...1] - re-use color
values from border of texture image

glTexParameteri(..., GL TEXTURE WRAP S,
GL CLAMP)
£ 9

L L
WL g
i s
University of
British Columbia

Texture Functions

= once have value from the texture map, can:
= directly use as surface color: GL_REPLACE

= throw away old color, lose lighting effects
= modulate surface color: GL_MODULATE

« multiply old color by new value, keep lighting info

= texturing happens after lighting, not relit
= use as surface color, modulate alpha: GL_DECAL

= like replace, but supports texture transparency
= blend surface color with another: GL_BLEND

= new value controls which of 2 colors to use
3 - Indirection, new value not used directly for coloring

L L
WL g
i s
University of
British Columbia

* Texture Mapping

= [exture coordinate interpolation
= Perspective foreshortening problem
= Also problematic for color interpolation, etc.

University of
British Columbia

* Perspective - Reminder

s Preserves order
= BUT distorts distances

University of
British Columbia

i Texture Coordinate Interpolation
sPerspective Correct Interpolation
= O B, Y .

Barycentric coordinates of point P
" Uy Uy, U, -

texture coordinates of vertices
= w,, w,w, : homogenous coordinate of vertices
u

@ Uy/Wo + Bty /Wy + 7 uy/w,

a/w, + p/w, +p/w,
= Similarly for v

University of
British Columbia

Reconstruction

enFereterafen
L LR

'-:’_1.1_.' n-_r;*:-'

| I |

Rot Roty | DT i (|

2 e |- 4l

- (image courtesy of Kiriakos Kutulakos, U Rochester)

University of
British Columbia

i Reconstruction

= How to deal with:

« pixels that are much larger than texels ?

(apply filtering, “averaging”)

= pixels that are much smaller than texels ?

(interpolate)

University of
British Columbia

MIP-mapping

Use “image pyramid” to precompute
averaged versions of the texture

Without MIP-mapping

University of

British Columbia With MIP-mapping

‘-L MIP-mapping

with

without

AL
i .
\ ."..‘

w%."“

University of
British Columbia

Volumetric Texture

= Define texture pattern over
3D domain - 3D space
containing the object

= Texture function can be
digitized or procedural

= For each point on object
compute texture from point
location in space

= Common for natural
material/irregular textures

stone, wood,etc...
=3 ¢)

.
L3RRl
Wl e/

University of
British Columbia

Principles

= 3D function p

= P =pXY,2)
= Texture Space — 3D space that holds the texture
(discrete or continuous)

= Rendering: for each rendered point P(x,y,z)
compute p(x,),z)

= Volumetric texture mapping function/space
transformed with objects

University of
British Columbia

Effects

= Boring Marble
= function boring_marble(point)
X = point.x;
return marble_color(sin(x));
// marble_color maps scalars to colors

= Bombing

= Randomly drop bombs of various shapes, sizes
and orientation into texture space (store data in

table)
= For point P search table and determine if inside
hape
3 o
e =« If 50, color by shape

L3RRl
Wl e/

University of
British Columbia

Effects (cont.)

= Otherwise, color by objects color
= Example:

.
L3RRl
Wl e/

University of
British Columbia

i Function Noise

= Noise — return scalar for each P(x,y,z)

= Defined as:
« Initially, for each x,y,zIin Z (X, y, Z € N):
H(X,y,z) = d (d - randomly chosen value)
= Retrieval:
« If (X,y,2) are all integers:
= Noise(X,y,z) = H(X,y,z)
= Otherwise:

= Noise(X,y,z) = interpolation of neighboring
H(X,Y,z)

University of
British Columbia

Function Noise (cont.)

........................

..........................

."“Z: .'ZH:: .'ZH:: .'ZH:: .'ZH:: .'ZH:: .'ZH:: .'ZH:: :IH:::

£ s

L L
WL g
i s
University of
British Columbia

Function Turbulence

function turbulence(p)
t=0;
scale = 1;
while (scale > pixelsize) {
t += abs(Noise(p/scale)*scale);
scale/=2;

}

return t;

£ s

L L
WL g
i s
University of
British Columbia

i More Effects

= Marble effect (using turbulence):
function marble(point)
X = point.x + turbulence(point);
return marble_color(sin(x))

University of
British Columbia

i Texture Parameters

= In addition to color can control other
material/object properties

= Reflectance (either diffuse or specular)

= Surface normal (bump mapping)

= [ransparency

University of
British Columbia

‘-L Normal — Bump Mapping

= Object surface often not smooth
— to recreate correctly need
complex geometry model

= Can control shape “effect” by
locally perturbing surface normal

= Random perturbation

= Directional change over
region

University of
British Columbia

%

Unive

* Bump Mapping

1]

W

British coiciiimiw

Olu)

Original surface

B(u)
A bump map

0'(u)

Lengthening or shortening
Ofu) using B(u)

N'(u)

_—*‘-

The vectors to the
‘new’ surface

U
British Columbia

Environment Mapping

= cheap way to achieve reflective effect
= generate image of surrounding
= map to object as texture

University of
British Columbia

i Environment Mapping

University of
British Columbia

used to model object that reflects
surrounding textures to the eye

= movie example: cyborg in Terminator 2

different approaches

= sphere, cube most popular

= OpenGL support
GL_SPHERE_MAP, GL_CUBE_MAP

= others possible too

Cube Mapping

= 6 planar textures, sides of cube

= point camera in 6 different directions, facing
out from origin

‘@h

¥ a} ’l.vﬁ

Ja _,) =1 |‘*
-.S mxwﬂ{-:;’

A

University of
British Columbia

Cube Mapping

F

S

Grace Cathedral Light Probe
©1999 Paul Debevec

rl <
E http://www.debevec.org/Probes

.
L3RRl
Wl e/

University of
British Columbia

Sphere Mapping

= texture is distorted fish-eye view
= point camera at mirrored sphere

= Spherical texture mapping creates texture coordinates
that correctly index into this texture map

