

Illumination Models

Illumination Equation

For multiple light sources:

$$I = I_{a}k_{a} + \sum_{p} \frac{I_{p}}{d_{p}^{2}} (k_{d}(N \cdot L_{p}) + k_{s}(R_{p} \cdot V)^{n})$$

d_p- distance between surface and light source
+ distance between surface and viewer
(Heuristic atmospheric attenuation)

4

Lighting in OpenGL

- Light source: amount of RGB light emitted
 - value represents percentage of full intensity, e.g., (1.0,0.5,0.5)
 - every light source emits ambient, diffuse, and specular light
- Materials: amount of RGB light reflected
 - value represents percentage reflected e.g., (0.0,1.0,0.5)

In OpenGL

- k_a, k_d, k_s surface color (RGB)
- Modify by glMaterialfv(GL_FRONT_AND_BACK, pname, RGB[])
- pname GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR
- Light source properties (also RGB) glLightfv(GL_LIGHTi,pname,light[])

Lighting in OpenGL

glLightfv(GL_LIGHT0, GL_AMBIENT, amb_light_rgba); glLightfv(GL_LIGHT0, GL_DIFFUSE, dif_light_rgba); glLightfv(GL_LIGHT0, GL_SPECULAR, spec_light_rgba); glLightfv(GL_LIGHT0, GL_POSITION, position); glEnable(GL_LIGHT0);

glMaterialfv(GL_FRONT, GL_AMBIENT, ambient_rgba); glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse_rgba); glMaterialfv(GL_FRONT, GL_SPECULAR, specular_rgba); glMaterialfv(GL_FRONT, GL_SHININESS, n);

Flat Shading

- Illumination value depends only on polygon normal
- each polygon colored with uniform intensity
- Not adequate for polygons approximating smooth surface

Gourard Shading

- Polyhedron approximation of smooth surface
 - Assign to each vertex normal of original surface at point
 - If surface not available use estimate normal
- Compute illumination intensity at vertices using those normals
- Linearly interpolate vertex intensities over interior pixels of polygon projection

