University of
British Columbia

!C'_hapter 10

Hidden Surface Removal

Hidden Surface Removal

m Issues
= Correctness
= Speed

= Multiple algorithms —
cover a few

= Algorithm types
= Object space
= Image space

= Remains major
£ 3 research topic in CG

L LR
'-:,_1.1_.' ”_”-*:.'

‘___' .___.-"'
University of
British Columbia

The Rendering Pipeline

Seomery || oaelirer

Database Transform. Lighting

e ' : Frame-
Conversion [TEXUMN9 ¢ Blending el

£ s

P
L IRTLE
v - o
University of
British Columbia

Polygonal Scenes

i Hidden Surface Removal for

= Input: Set of polygons in three-dimensional
space + viewpoint (possibly at infinity)

= Output: Drawing order

= Two-dimensional image of projected
polygons, containing

only visible portions %

University of
British Columbia

Back Face Culling (object space)

= In closed polyhedron you
don’t see object “back”
faces

= Assumption

= Normals of faces point out
from the object

£ s

.
L3RRl
Wl e/

University of
British Columbia

i Back Face Culling

= Determine back & front faces using sign of
Inner product nv
n-v=ny, +nV,+nyV, =|n|-|v|cosé
= In a convex object :
= Invisible back faces

= All front faces entirely visible = solves hidden
surfaces problem

= In non-convex object:
= Invisible back faces

= Front faces can be visible, invisible, or partially
visible

University of Demo 1' Eemo 2'
British Columbia

* Depth Sort (object space)

= Question: Given a set of polygons, is it
possible to:
= sort them (by depth)
=« then paint them back to front (over each
other) to remove the hidden surfaces ?
" Answer: No

" Works for special cases
= E.g. polygons
with constant z

University of
British Columbia

Depth Sort by Splitting

= Given two polygons, P and Q, can order in ZIf:
1. P and Q do not overlap in their x extents
2. Or P and Q do not overlap in their y extents
3. Or P is totally on one side of Q’s plane
2. Or Q is totally on one side of P’s plane
s. Or P and Q do not intersect in projection plane

= If neither holds, split P along its intersection with Q
(2D) into two smaller polygons

= How does this apply to examples on previous slide?

R

£ 4

enFereterafen

L LR

'-:,_1.1_.' ”_”-*:.' P P
oy ¥

University of
British Columbia

P<Q<R

i BSP Trees

= Different use of tests 3 & 4 in Depth Sort method
= Define:

= Sp — set of polygons

s Pe S,

= N, normal to P

= Pinplane L,
= Subdivide into 3 groups:

= Polygons in front of L, (N, direction)

= Polygons behind L,

= Polygons intersecting L,
. Split polygons in class 3 along L, place pieces in
University of TIFST 2 groups

British Columbia

i BSP Trees

s After subdivision

= Polygons behind L can't obscure P = draw
first

= P can’t obscure polygons in front of L, = draw
P

= Draw polygons in front of L,

= Recursively subdivide and draw front & back
sets

= BSP — Binary Space Partition

University of
British Columbia

i BSP Trees

= Convention: Right
sibling in N, direction

= BSP Tree is view
Independent

= Constructed using only
object geometry

s Can be used Iin hidden
surface removal from
multiple views

= How to choose what is
visible for given view?

University of
British Columbia

i BSP Trees

= Given view direction I/ perform recursive tree
traversal

= Visit back side tree(from this view)
= Draw current node’s polygon
= Visit from side tree

= To decide which side is back/front for given
view check sign of VN,

University of
British Columbia

The Rendering Pipeline

Seomery || oaelirer

Database Transform. Lighting

e ' : Frame-
Conversion [TEXUMN9 ¢ Blending el

£ s

P
L IRTLE
v - o
University of
British Columbia

i Z-Buffer Algorithm (image space)

= ldea: Instead of always painting over
pixel while scan-converting a polygon,
do that only if polygon’s depth is less
than current depth at that pixel

|

= In each pixel save color and current

depth 2 m

= New color will replace current only if
closer in z

University of
British Columbia

/Z-Buffer

ZBuffer(Scene)
For every pixel (X,y) do PutZ(x,y,MaxZ);
For each polygon P In Scene do
Q = Project(P);
For each pixel (x,y) In Q do
z1 = Depth(Q.X,y);
IT (z1<GetZ(X,y)) then
PutZz(x,y,zl);
PutColor(x,y,Col(P));
end;
end;
end;

— Questions: How to compute Project(P) &
== Depth(Qxy)?

£ SR
‘x,»-’
University of
British Columbia

i Z-Buffer - Project(P)

= Rasterize polygon (use X,y coords)

= To preserve depth
= Store Z separately

= Or use perspective warp
rendering pipeline)

N

AN

y=bottom Z=-near
x=right

University of

British Columbia

z=-far

NDCS

(-1,-1,-1)

[2n

r

0

0
0

r+1

2N t+b
t(bpeﬂgjlﬁ) _2fn
f—n f—n
0 -1 0
1,1,1)

= Z, monotonic in z — use as depth to set order

i /-Buffer — Depth(Q,X,y)

Z4=a121+(1—a1)22 25:a221+(1_a2)23

T . scanline Y=y

University of
British Columbia

i Z-Buffer Algorithm Properties

= Image space algorithm — 3

zhuffer

= Data structure: Array of depth values

= Common Iin hardware due to simplicity

= Depth resolution of 32 bits is common

s Scene may be updated on the fly adding
new polygons

University of
British Columbia

The Rendering Pipeline

Seomery || oaelirer

Database Transform. Lighting

Frame-

Texturing : Blending } buffer

Scan
Conversion

S

£ s

L L
WL g
i s
University of
British Columbia

i Transparency/Object Buffer

s A-buffer - extension to Z-buffer
= Save all pixel values

= At the end — have list of polygons &
depths (order) for each pixel

= Simulate transparency by weighting
different list elements

University of
British Columbia

i Scan-Line Z-Buffer Algorithm

University of
British Columbia

In software implementations - amount of
memory required for screen Z-buffer is
prohibitive

Scan-line Z-buffer algorithm:

= Render image one line at a time

= Take into account only polygons affecting this line

Combination of polygon scan-conversion & Z-
buffer algorithms

Only Z-buffer the size of scan-line is required
Scene must be available apriori
Image cannot be updated incrementally

Scan-Line Z-Buffer Algorithm

ScanLineZBuffer(Scene)

Scene-2D := Project(Scene);

Sort Scene-2D 1nto buckets of polygons P 1In
increasing order of YMin(P);

A = EmptySet;

For y = YMiIn(Scene-2D) to YMax(Scene-2D) do

For each pixel (X,y) In scanline Y=y do

PutZ(x,Max2);

A = A+{P 1In Scene : YMin(P)<=y};

A = A—{P In A - YMax(P)<y};

For each polygon P iIn A

z1 := Depth(P,x,VY);
IT (z1<GetZ(x)) then

PutZz(x,zl);
PutColor(x,y,Col(P));
£ 9 end;
e end;
k4 end;

University of
British Columbia

For each pixel (X,y) In P’s spans on the scanline

