

University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2016

Tamara Munzner

Viewing 2

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2016

Projections I

Pinhole Camera

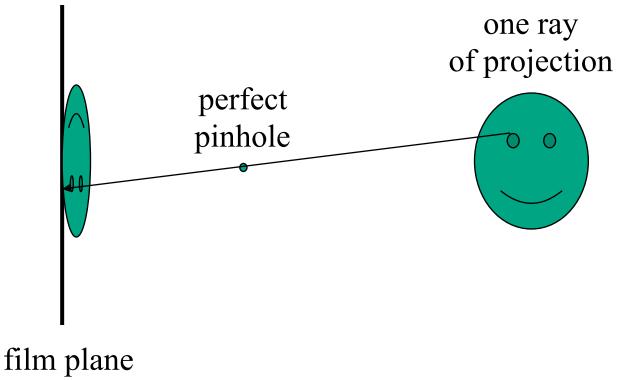
- ingredients
 - box, film, hole punch
- result
 - picture

www.pinhole.org

www.debevec.org/Pinhole

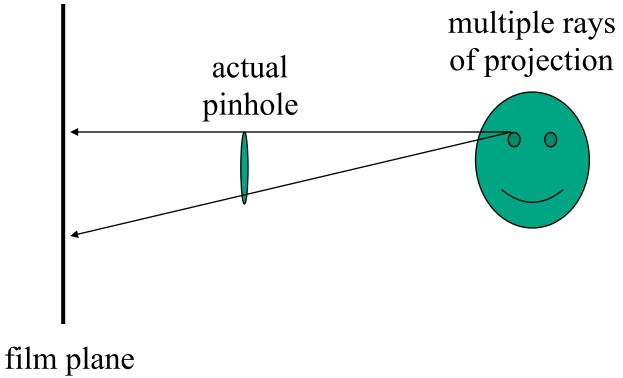
Pinhole Camera

- theoretical perfect pinhole
 - light shining through tiny hole into dark space yields upside-down picture



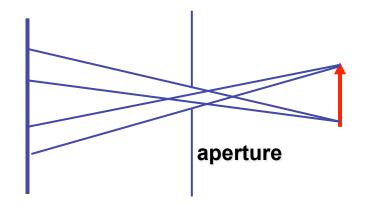
Pinhole Camera

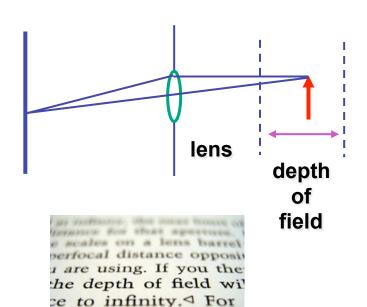
- non-zero sized hole
 - blur: rays hit multiple points on film plane



Real Cameras

- pinhole camera has small aperture (lens opening)
 - minimize blur
- problem: hard to get enough light to expose the film
- solution: lens
 - permits larger apertures
 - permits changing distance to film plane without actually moving it
 - cost: limited depth of field where image is in focus

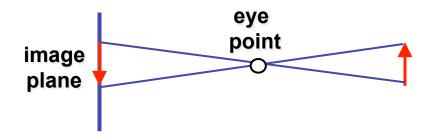




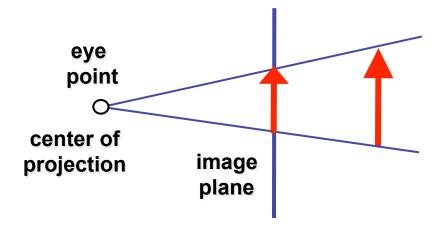
amera has a hyperf

Graphics Cameras

real pinhole camera: image inverted

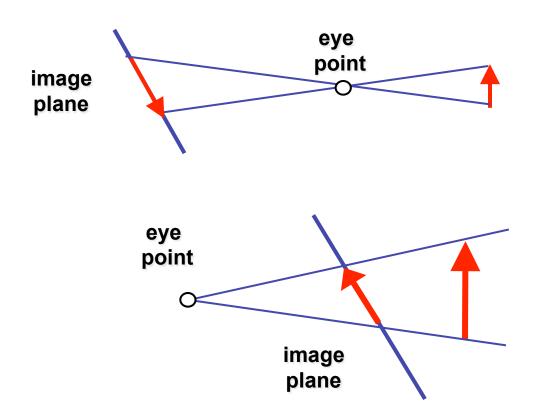


computer graphics camera: convenient equivalent

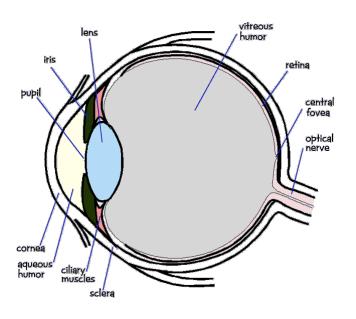


General Projection

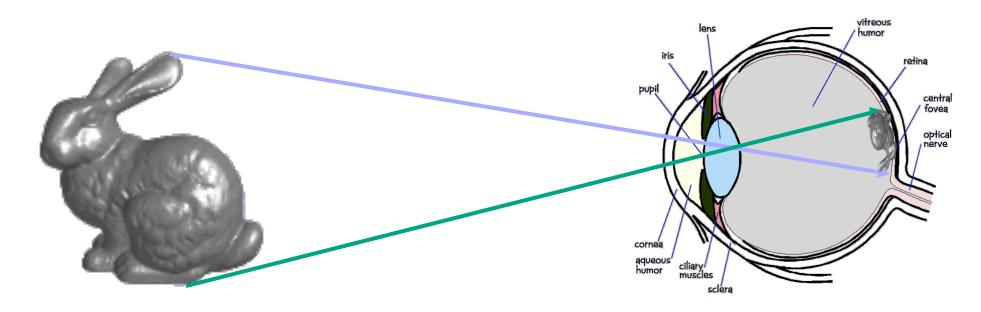
 image plane need not be perpendicular to view plane



our camera must model perspective



our camera must model perspective



Projective Transformations

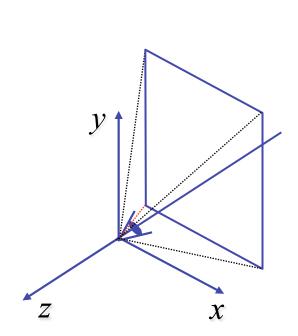
- planar geometric projections
 - planar: onto a plane
 - geometric: using straight lines
 - projections: 3D -> 2D
- aka projective mappings
- counterexamples?

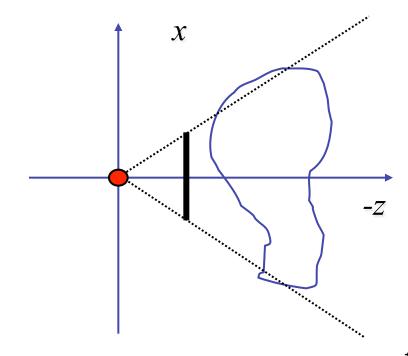
Projective Transformations

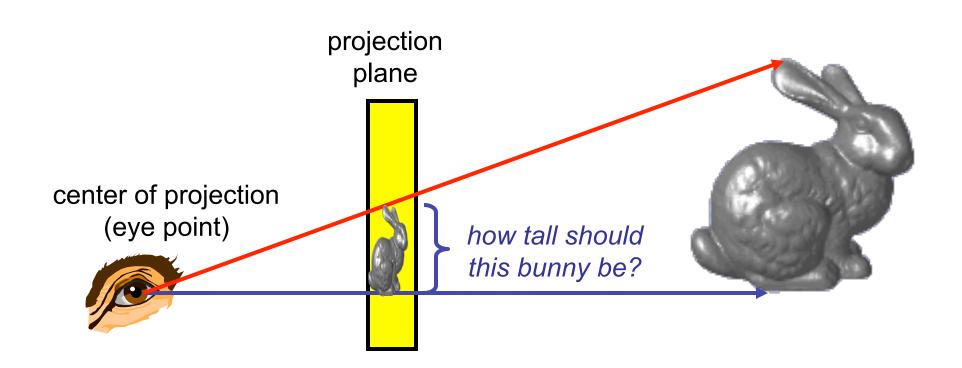
- properties
 - lines mapped to lines and triangles to triangles
 - parallel lines do NOT remain parallel
 - e.g. rails vanishing at infinity

- affine combinations are NOT preserved
 - e.g. center of a line does not map to center of projected line (perspective foreshortening)

- project all geometry
 - through common center of projection (eye point)
 - onto an image plane

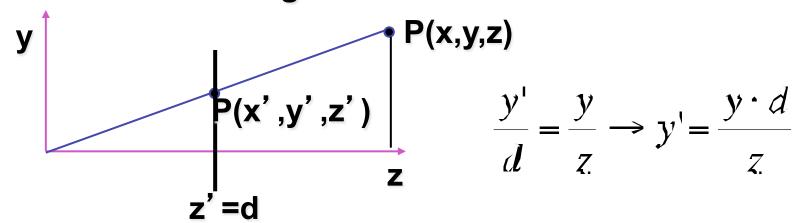






Basic Perspective Projection

similar triangles



$$\frac{x'}{d} = \frac{x}{z} \rightarrow x' = \frac{x \cdot d}{z}$$

but
$$z' = d$$

- nonuniform foreshortening
 - not affine

 desired result for a point [x, y, z, 1]^T projected onto the view plane:

$$\frac{x'}{d} = \frac{x}{z}, \quad \frac{y'}{d} = \frac{y}{z}$$

$$x' = \frac{x \cdot d}{z} = \frac{x}{z/d}, \quad y' = \frac{y \cdot d}{z} = \frac{y}{z/d}, \quad z' = d$$

what could a matrix look like to do this?

Simple Perspective Projection Matrix

$$\begin{bmatrix} x \\ \hline z/d \\ \\ \hline y \\ \hline z/d \\ \\ d \end{bmatrix}$$

Simple Perspective Projection Matrix

$\int X$
$\overline{z/d}$
\mathcal{Y}
$\overline{z/d}$
d

is homogenized version of
$$\begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix}$$
 where w = z/d

Simple Perspective Projection Matrix

$$\begin{bmatrix} x \\ \hline z/d \\ \hline y \\ \hline z/d \\ d \end{bmatrix}$$

$$\begin{array}{c|c}
x \\
y \\
z \\
z/d
\end{array}$$

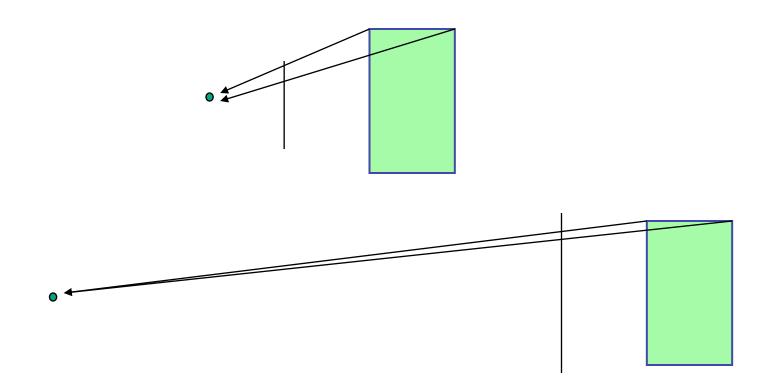
is homogenized version of
$$\begin{bmatrix} x \\ y \\ z/d \end{bmatrix}$$
where w = z/d
$$\begin{bmatrix} x \\ y \\ z/d \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \\ z/d \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- expressible with 4x4 homogeneous matrix
 - use previously untouched bottom row
- perspective projection is irreversible
 - many 3D points can be mapped to same (x, y, d) on the projection plane
 - no way to retrieve the unique z values

Moving COP to Infinity

- as COP moves away, lines approach parallel
 - when COP at infinity, orthographic view



Orthographic Camera Projection

- camera's back plane parallel to lens
- infinite focal length
- no perspective convergence

$$\begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$$

• just throw away z values
$$\begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

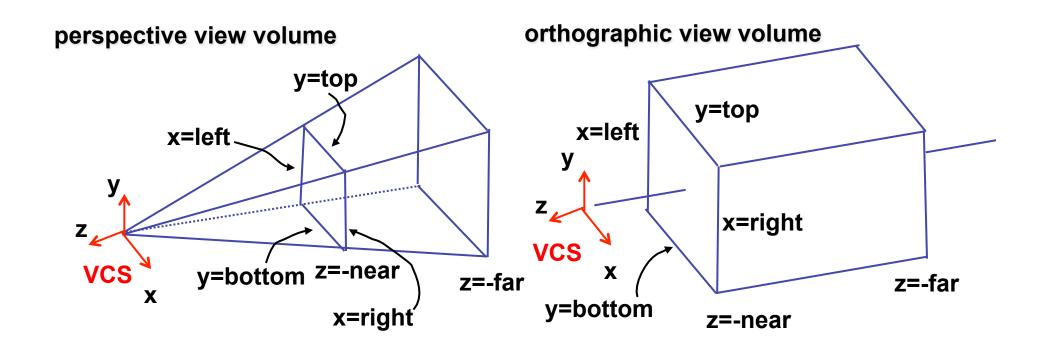
Perspective to Orthographic

- transformation of space
 - center of projection moves to infinity
 - view volume transformed
 - from frustum (truncated pyramid) to parallelepiped (box)



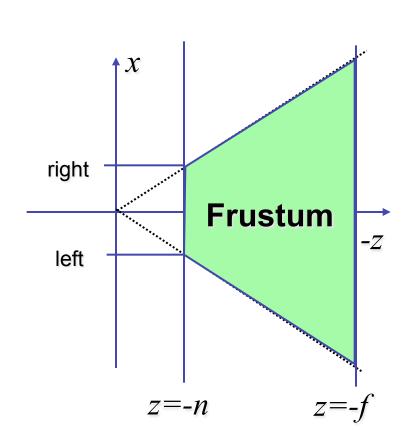
View Volumes

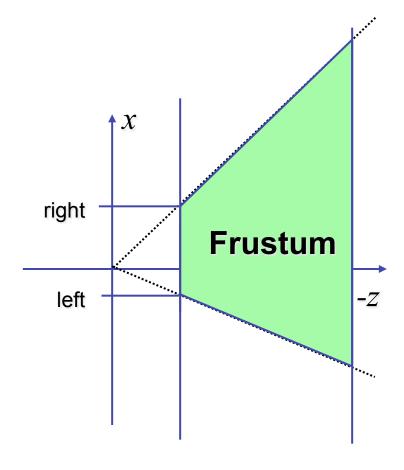
- specifies field-of-view, used for clipping
- restricts domain of z stored for visibility test



Asymmetric Frusta

- our formulation allows asymmetry
 - why bother?

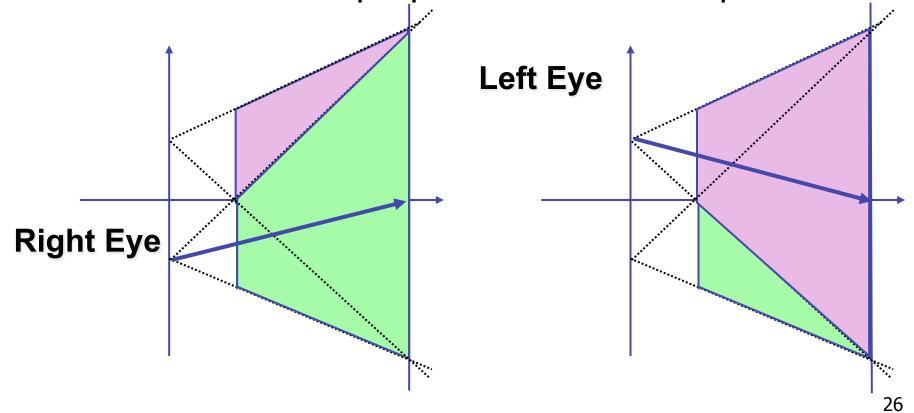




Asymmetric Frusta

- our formulation allows asymmetry
 - why bother? binocular stereo

view vector not perpendicular to view plane

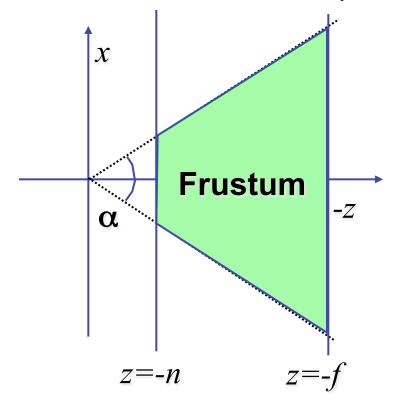


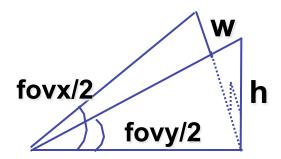
Simpler Formulation

- left, right, bottom, top, near, far
 - nonintuitive
 - often overkill
- look through window center
 - symmetric frustum
- constraints
 - left = -right, bottom = -top

Field-of-View Formulation

- FOV in one direction + aspect ratio (w/h)
 - determines FOV in other direction
 - also set near, far (reasonably intuitive)





THREE.PerspectiveCamera (fovy,aspect,near,far);

Demos

frustum

- http://webglfundamentals.org/webgl/frustum-diagram.html
- http://www.ugrad.cs.ubc.ca/~cs314/Vsep2014/webGL/view-frustum.html

orthographic vs projection cameras

- http://threejs.org/examples/#canvas_camera_orthographic2
- http://threejs.org/examples/#webgl_camera
- https://www.script-tutorials.com/webgl-with-three-js-lesson-9/