Pinhole Camera

Tamara Munzner

Viewing 2
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2016

- ingredients
- box, film, hole punch

Projections
result

- picture

Pinhole Camera
non-zero sized hole

- blur: rays hit multiple points on film plane

Perspective Projection

- our camera must model perspective

Perspective Projection
project all geometry

- through common center of projection (eye point) - onto an image plane

Basic Perspective Projection

y
$\underbrace{\left.\mathbf{P}\left(\mathbf{x}^{\prime}, y^{\prime}, z^{\prime}\right)\right|_{\mathbf{z}} ^{\mathbf{y}}}_{z^{\prime}=\mathbf{d}} \frac{y^{\prime}}{d}=\frac{y}{z} \rightarrow y^{\prime}=\frac{y \cdot d}{z}$

$$
\frac{x^{\prime}}{d}=\frac{x}{z} \rightarrow x^{\prime}=\frac{x \cdot d}{z} \quad \text { but } \quad z^{\prime}=d
$$

- nonuniform foreshortening
- not affine

Perspective Projection

- desired result for a point $[\mathrm{x}, \mathrm{y}, \mathrm{z}, 1]^{\top}$ projected onto the view plane:

$$
\begin{gathered}
\frac{x^{\prime}}{d}=\frac{x}{z}, \quad \frac{y^{\prime}}{d}=\frac{y}{z} \\
x^{\prime}=\frac{x \cdot d}{z}=\frac{x}{z \cdot d}, \quad y^{\prime}=\frac{y \cdot d}{z}=\frac{y}{z \cdot d}, \quad z^{\prime}=d
\end{gathered}
$$

- what could a matrix look like to do this?

Simple Perspective Projection Matrix

Moving COP to Infinity

- as COP moves away, lines approach parallel - when COP at infinity, orthographic view

Simple Perspective Projection Matrix

$\left[\begin{array}{c}\frac{x}{z / d} \\ \frac{y}{z / d}\end{array} \quad\right.$ is homogenized version of $\left[\begin{array}{c}x \\ y \\ z \\ z / d\end{array}\right]$

Simple Perspective Projection Matrix

Perspective Projection

$\left[\begin{array}{c}\frac{x}{z / d} \\ \frac{y}{z / d}\end{array}\right] \quad$ is homogenized version of $\left[\begin{array}{c}x \\ y \\ z \\ z / d\end{array}\right]$

- expressible with 4×4 homogeneous matrix - use previously untouched bottom row - perspective projection is irreversible
- many 3D points can be mapped to same (x, y, d) on the projection plane
- no way to retrieve the unique z values

Orthographic Camera Projection

camera's back plane parallel to lens

- infinite focal length - no perspective convergence
- just throw away z values

$\left[\begin{array}{c}x_{p} \\ y_{p} \\ z_{p} \\ 1\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$

21

View Volumes

- specifies field-of-view, used for clipping
- restricts domain of \boldsymbol{z} stored for visibility test

Asymmetric Frusta

our formulation allows asymmetry

- why bother?

Asymmetric Frusta

- our formulation allows asymmetry
- why bother? binocular stereo
- view vector not perpendicular to view plane

Perspective to Orthographic

- transformation of space
- center of projection moves to infinity
- view volume transformed
- from frustum (truncated pyramid) to parallelepiped (box)

Simpler Formulation

- left, right, bottom, top, near, far - nonintuitive
- often overkill
- look through window center
- symmetric frustum
- constraints
- left = -right, bottom = -top
${ }^{25}$

Demos

- frustum

- http://webglfundamentals.org/webgl/frustum-diagram.htm|
http://www.ugrad.cs.ubc.ca/~cs314//sep2014/webGL/view-
frustum.html
- orthographic vs projection cameras
- hitp://threejs.org/examples/Hcanvas_camera_orthographic2
- http://threejs.org/examples/\#webgl camera
- https://www.script-tutorials.com/webgl-with-three-is-lesson-9/

