# University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2016 

## Tamara Munzner

## Viewing 1

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2016

## Viewing

## Using Transformations

- three ways
- modelling transforms
- place objects within scene (shared world)
- affine transformations
- viewing transforms
- place camera
- rigid body transformations: rotate, translate
- projection transforms
- change type of camera
- projective transformation


## Rendering Pipeline



## Rendering Pipeline

- result

- all vertices of scene in shared 3D world coordinate system



## Rendering Pipeline

- result

- scene vertices in 3D view (camera) coordinate system



## Rendering Pipeline

- result

- 2D screen coordinates of clipped vertices



## Viewing and Projection

- need to get from 3D world to 2D image
- projection: geometric abstraction
- what eyes or cameras do
- two pieces
- viewing transform:
- where is the camera, what is it pointing at?
- perspective transform: 3D to 2D
- flatten to image


## Coordinate Systems

- result of a transformation
- names
- convenience
- animal: leg, head, tail
- standard conventions in graphics pipeline
- object/modelling
- world
- camera/viewing/eye
- screen/window
- raster/device


## Projective Rendering Pipeline

| object OCS O2W world $\quad$ W2V | $\begin{aligned} & \text { viewing } \\ & \text { VCs } \end{aligned}$ |  |
| :---: | :---: | :---: |
| $\underset{\text { transformation }}{\text { modeling }} \longrightarrow$viewing <br> transformation | $\square$ projection transformation |  |
|  | C2N | CCS |
| WCS - world coordinate system | perspective |  |
| VCS - viewing/camera/eye coordinate system | N2D | device NDCS |
| CCS - clipping coordinate system | viewport transformation |  |
| NDCS - normalized device coordinate system |  | device DCS |
| DS - device/display/screen coordinate system |  |  |

## Viewing Transformation


modelview matrix

## Basic Viewing

- starting spot - GL
- camera at world origin
- probably inside an object
- y axis is up
- looking down negative $z$ axis
- why? RHS with $x$ horizontal, y vertical, z out of screen
- translate backward so scene is visible
- move distance d = focal length


## Convenient Camera Motion

- rotate/translate/scale versus
- eye point, gaze/lookat direction, up vector
- lookAt(ex,ey,ez,lx,ly,lz,ux,uy,uz)


## Convenient Camera Motion

- rotate/translate/scale versus
- eye point, gaze/lookat direction, up vector



## Placing Camera in World Coords: V2W

- treat camera as if it's just an object
- translate from origin to eye
- rotate view vector (lookat - eye) to waxis
- rotate around w to bring up into vw-plane



## Deriving V2W Transformation

- translate origin to eye

$$
\mathbf{T}=\left[\begin{array}{lllc}
1 & 0 & 0 & e_{x} \\
0 & 1 & 0 & e_{y} \\
0 & 0 & 1 & e_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$



## Deriving V2W Transformation

- rotate view vector (lookat - eye) to w axis
- w: normalized opposite of view/gaze vector $\mathbf{g}$

$$
\mathbf{w}=-\hat{\mathbf{g}}=-\frac{\mathbf{g}}{|\mathbf{g}|}
$$



## Deriving V2W Transformation

- rotate around w to bring up into vw-plane
- u should be perpendicular to vw-plane, thus perpendicular to $\mathbf{w}$ and up vector $\mathbf{t}$
- $\mathbf{v}$ should be perpendicular to $\mathbf{u}$ and $\mathbf{w}$



## Deriving V2W Transformation

- rotate from WCS xyz into uvw coordinate system with matrix that has columns $\mathbf{u}, \mathbf{v}, \mathbf{w}$

$$
\begin{array}{cc}
\mathbf{u}=\frac{\mathbf{t} \times \mathbf{W}}{\mid \mathbf{t} \times \mathbf{W} \|} & \mathbf{V}=\mathbf{W} \times \mathbf{u}
\end{array} \mathbf{\mathbf { w }}=-\hat{\mathbf{g}}=-\frac{\mathbf{g}}{\| \mathbf{g} \mid}
$$

- reminder: rotate from uvw to $\mathbf{x y z}$ coord sys with matrix $\mathbf{M}$ that has columns $\mathbf{u}, \mathbf{v}, \mathbf{w}$


## V2W vs. W2V

- $\mathrm{M}_{\mathrm{V} 2 \mathrm{~W}}=\mathrm{TR}$

$$
\mathbf{T}=\left[\begin{array}{cccc}
1 & 0 & 0 & e_{x} \\
0 & 1 & 0 & e_{y} \\
0 & 0 & 1 & e_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{R}=\left[\begin{array}{llll}
u_{x} & v_{x} & w_{x} & 0 \\
u_{y} & v_{y} & w_{y} & 0 \\
u_{z} & v_{z} & w_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- we derived position of camera as object in world
- invert for lookAt: go from world to camera!
- $\mathrm{M}_{\mathrm{w} 2 \mathrm{~V}}=\left(\mathrm{M}_{\mathrm{V} 2 \mathrm{~W}}\right)^{-1}=\mathrm{R}^{-1} \mathrm{~T}^{-1}$

$$
\mathbf{R}^{-1}=\left[\begin{array}{cccc}
u_{x} & u_{y} & u_{z} & 0 \\
v_{x} & v_{y} & v_{z} & 0 \\
w_{x} & w_{y} & w_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \mathbf{T}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & -e_{x} \\
0 & 1 & 0 & -e_{y} \\
0 & 0 & 1 & -e_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- inverse is transpose for orthonormal matrices
- inverse is negative for translations


## V2W vs. W2V

- $\mathrm{M}_{\mathrm{W} 2 \mathrm{~V}}=\left(\mathrm{M}_{\mathrm{V} 2 \mathrm{~W}}\right)^{-1}{ }_{=} \mathrm{R}^{-1} \mathrm{~T}^{-1}$
$\mathbf{M}_{\text {world2view }}=\left[\begin{array}{cccc}u_{x} & u_{y} & u_{z} & 0 \\ v_{x} & v_{y} & v_{z} & 0 \\ w_{x} & w_{y} & w_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & -e_{x} \\ 0 & 1 & 0 & -e_{y} \\ 0 & 0 & 1 & -e_{z} \\ 0 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{cccc}u_{x} & u_{y} & u_{z} & -\mathbf{e} \cdot \mathbf{u} \\ v_{x} & v_{y} & v_{z} & -\mathbf{e} \cdot \mathbf{v} \\ w_{x} & w_{y} & w_{z} & -\mathbf{e} \cdot \mathbf{W} \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\mathbf{M}_{W 2 V}=\left[\begin{array}{cccc}
u_{x} & u_{y} & u_{z} & -e_{x} * u_{x}+-e_{y} * u_{y}+-e_{z} * u_{z} \\
v_{x} & v_{y} & v_{z} & -e_{x} * v_{x}+-e_{y} * v_{y}+-e_{z} * v_{z} \\
w_{x} & w_{y} & w_{z} & -e_{x} * w_{x}+-e_{y} * w_{y}+-e_{z} * w_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

## Moving the Camera or the World?

- two equivalent operations
- move camera one way vs. move world other way
- example
- initial GL camera: at origin, looking along -z axis
- create a unit square parallel to camera at $z=-10$
- translate in z by 3 possible in two ways
- camera moves to $z=-3$
- Note GL models viewing in left-hand coordinates
- camera stays put, but world moves to -7
- resulting image same either way
- possible difference: are lights specified in world or view coordinates?


## World vs. Camera Coordinates Example



$$
\begin{aligned}
& a=(1,1)_{\mathrm{w}} \\
& b=(1,1)_{\mathrm{C} 1}=(5,3)_{\mathrm{W}} \\
& c=(1,1)_{\mathrm{C} 2}=(1,3)_{\mathrm{C} 1}=(5,5)_{\mathrm{W}}
\end{aligned}
$$

