

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2016

Viewing 1

University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2016

2

Viewing

3

Using Transformations
•  three ways

•  modelling transforms
• place objects within scene (shared world)
• affine transformations

•  viewing transforms
• place camera
•  rigid body transformations: rotate, translate

•  projection transforms
•  change type of camera
• projective transformation

4

Rendering Pipeline

Scene graph
Object geometry

Modelling
Transforms

Viewing
Transform

Projection
Transform

5

Scene graph
Object geometry

Modelling
Transforms

Viewing
Transform

Projection
Transform

Rendering Pipeline

•  result
•  all vertices of scene in shared

3D world coordinate system

6

Scene graph
Object geometry

Modelling
Transforms

Viewing
Transform

Projection
Transform

Rendering Pipeline

•  result
•  scene vertices in 3D view

(camera) coordinate system

7

Scene graph
Object geometry

Modelling
Transforms

Viewing
Transform

Projection
Transform

Rendering Pipeline

•  result
•  2D screen coordinates of

clipped vertices

8

Viewing and Projection

•  need to get from 3D world to 2D image
•  projection: geometric abstraction

•  what eyes or cameras do
•  two pieces

•  viewing transform:
• where is the camera, what is it pointing at?

•  perspective transform: 3D to 2D
•  flatten to image

9

Coordinate Systems
•  result of a transformation
•  names

•  convenience
• animal: leg, head, tail

•  standard conventions in graphics pipeline
• object/modelling
• world
•  camera/viewing/eye
•  screen/window
•  raster/device

10

Projective Rendering Pipeline

OCS - object/model coordinate system

WCS - world coordinate system

VCS - viewing/camera/eye coordinate
system

CCS - clipping coordinate system

NDCS - normalized device coordinate
system

DCS - device/display/screen coordinate
system

OCS O2W VCS

CCS

NDCS

DCS

modeling
transformation

viewing
transformation

projection
transformation

viewport
transformation

perspective
divide

object world viewing

device

normalized
device

clipping

W2V V2C

N2D

C2N

WCS

11

Viewing Transformation

OCS WCS VCS
modeling

transformation
viewing

transformation

modelview matrix

object world viewing

y

x

VCS

Peye
z

y x WCS

y

z
OCS

image
plane

Mmod Mcam

12

Basic Viewing
•  starting spot - GL

•  camera at world origin
•  probably inside an object

•  y axis is up
•  looking down negative z axis

•  why? RHS with x horizontal, y vertical, z out of screen
•  translate backward so scene is visible

•  move distance d = focal length

13

Convenient Camera Motion

•  rotate/translate/scale versus
•  eye point, gaze/lookat direction, up vector

• lookAt(ex,ey,ez,lx,ly,lz,ux,uy,uz)

14

Convenient Camera Motion

•  rotate/translate/scale versus
•  eye point, gaze/lookat direction, up vector

Peye

Pref

up
view

eye

lookat y

z

x
WCS

15

Placing Camera in World Coords: V2W

•  treat camera as if it’s just an object
•  translate from origin to eye
•  rotate view vector (lookat – eye) to w axis
•  rotate around w to bring up into vw-plane

y

z

x
WCS

v

u

VCS

Peye
w

Pref

up
view

eye

lookat

16

Deriving V2W Transformation

•  translate origin to eye

€

T =

1 0 0 e
x

0 1 0 e
y

0 0 1 e
z

0 0 0 1



















y

z

x
WCS

v

u

VCS

Peye
w

Pref

up
view

eye

lookat

17

Deriving V2W Transformation
•  rotate view vector (lookat – eye) to w axis

•  w: normalized opposite of view/gaze vector g

€

w = −ˆ g = −
g

g

y

z

x
WCS

v

u

VCS

Peye
w

Pref

up
view

eye

lookat

18

Deriving V2W Transformation
•  rotate around w to bring up into vw-plane

•  u should be perpendicular to vw-plane, thus
perpendicular to w and up vector t

•  v should be perpendicular to u and w

€

u =
t ×w

t ×w

€

v = w × u

y

z

x
WCS

v

u

VCS

Peye
w

Pref

up
view

eye

lookat

19

Deriving V2W Transformation
•  rotate from WCS xyz into uvw coordinate system with matrix that has

columns u, v, w

•  reminder: rotate from uvw to xyz coord sys with matrix M that has
columns u,v,w

€

u =
t ×w

t ×w

€

v = w × u

€

w = −ˆ g = −
g

g

€

R =

u
x
v
x
w
x
0

u
y
v
y
w
y
0

u
z
v
z
w
z
0

0 0 0 1



















MV2W=TR

€

T=

1 0 0 e
x

0 1 0 e
y

0 0 1 e
z

0 0 0 1



















20

V2W vs. W2V

•  MV2W=TR

•  we derived position of camera as object in world
•  invert for lookAt: go from world to camera!

•  MW2V=(MV2W)-1
=R-1T-1

•  inverse is transpose for orthonormal matrices
•  inverse is negative for translations

€

T
−1 =

1 0 0 −e
x

0 1 0 −e
y

0 0 1 −e
z

0 0 0 1



















€

R
−1 =

u
x

u
y

u
z
0

v
x

v
y

v
z
0

w
x
w
y
w
z
0

0 0 0 1



















€

T=

1 0 0 e
x

0 1 0 e
y

0 0 1 e
z

0 0 0 1



















€

R =

u
x
v
x
w
x
0

u
y
v
y
w
y
0

u
z
v
z
w
z
0

0 0 0 1



















21

V2W vs. W2V

•  MW2V=(MV2W)-1
=R-1T-1

€

M
world2view

=

ux uy uz 0

vx vy vz 0

wx wy wz 0

0 0 0 1



















1 0 0 −ex
0 1 0 −ey
0 0 1 −ez
0 0 0 1



















=

ux uy uz −e •u

vx vy vz −e • v

wx wy wz −e •w

0 0 0 1



















€

M
W 2V

=

ux uy uz −ex ∗ ux + −ey ∗ uy + −ez ∗ uz
vx vy vz −ex ∗vx + −ey ∗vy + −ez ∗vz
wx wy wz −ex ∗wx + −ey ∗wy + −ez ∗wz

0 0 0 1



















22

Moving the Camera or the World?
•  two equivalent operations
•  move camera one way vs. move world other way

•  example
•  initial GL camera: at origin, looking along -z axis
•  create a unit square parallel to camera at z = -10
•  translate in z by 3 possible in two ways

•  camera moves to z = -3
•  Note GL models viewing in left-hand coordinates

•  camera stays put, but world moves to -7

•  resulting image same either way
•  possible difference: are lights specified in world or view

coordinates?

23

World vs. Camera Coordinates Example

W

a = (1,1)W

a

b = (1,1)C1 = (5,3)W

c = (1,1)C2= (1,3)C1 = (5,5)W

C1

b

C2

c

