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Using Transformations 
•  three ways 

•  modelling transforms 
• place objects within scene (shared world) 
• affine transformations 

•  viewing transforms 
• place camera 
•  rigid body transformations: rotate, translate 

•  projection transforms  
•  change type of camera 
• projective transformation 
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Rendering Pipeline 
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Scene graph 
Object geometry 
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Rendering Pipeline 

•  result 
•  all vertices of scene in shared 

3D world coordinate system 
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Scene graph 
Object geometry 
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Rendering Pipeline 

•  result 
•  scene vertices in 3D view 

(camera) coordinate system 
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Scene graph 
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•  result 
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clipped vertices 
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Viewing and Projection 

•  need to get from 3D world to 2D image 
•  projection: geometric abstraction 

•  what eyes or cameras do 
•  two pieces 

•  viewing transform:  
• where is the camera, what is it pointing at? 

•  perspective transform: 3D to 2D 
•  flatten to image 
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Coordinate Systems 
•  result of a transformation 
•  names 

•  convenience 
• animal: leg, head, tail 

•  standard conventions in graphics pipeline 
• object/modelling 
• world 
•  camera/viewing/eye 
•  screen/window 
•  raster/device 
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Projective Rendering Pipeline 

OCS - object/model  coordinate system 
 

WCS - world coordinate system  
 

VCS - viewing/camera/eye coordinate 
system  
 

CCS - clipping coordinate system  
 

NDCS - normalized device coordinate 
system 
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Viewing Transformation 
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Basic Viewing 
•  starting spot - GL 

•  camera at world origin 
•  probably inside an object 

•  y axis is up 
•  looking down negative z axis 

•  why? RHS with x horizontal, y vertical, z out of screen 
•  translate backward so scene is visible 

•  move distance d = focal length 
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Convenient Camera Motion 

•  rotate/translate/scale versus 
•  eye point, gaze/lookat direction, up vector 

• lookAt(ex,ey,ez,lx,ly,lz,ux,uy,uz) 
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Convenient Camera Motion 

•  rotate/translate/scale versus 
•  eye point, gaze/lookat direction, up vector 
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Placing Camera in World Coords: V2W  

•  treat camera as if it’s just an object 
•  translate from origin to eye 
•  rotate view vector (lookat – eye) to w axis 
•  rotate around w to bring up into vw-plane 
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Deriving V2W Transformation 

•  translate origin to eye 
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Deriving V2W Transformation 
•  rotate view vector (lookat – eye) to w axis 

•  w: normalized opposite of view/gaze vector g 
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Deriving V2W Transformation 
•  rotate around w to bring up into vw-plane 

•  u should be perpendicular to vw-plane, thus 
perpendicular to w and up vector t 

•  v should be perpendicular to u and w 
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Deriving V2W Transformation 
•  rotate from WCS xyz into uvw coordinate system with matrix that has 

columns u, v, w 

•  reminder: rotate from uvw to xyz coord sys with matrix M that has 
columns u,v,w 
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V2W vs. W2V 

•  MV2W=TR 

•  we derived position of camera as object in world 
•  invert for lookAt: go from world to camera! 

•  MW2V=(MV2W)-1
=R-1T-1 

•  inverse is transpose for orthonormal matrices 
•  inverse is negative for translations 
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V2W vs. W2V 

•  MW2V=(MV2W)-1
=R-1T-1 
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Moving the Camera or the World? 
•  two equivalent operations 
•  move camera one way vs. move world other way 

•  example 
•  initial GL camera: at origin, looking along -z axis 
•  create a unit square parallel to camera at z = -10 
•  translate in z by 3 possible in two ways 

•  camera moves to z = -3 
•  Note GL models viewing in left-hand coordinates 

•  camera stays put, but world moves to -7 

•  resulting image same either way 
•  possible difference: are lights specified in world or view 

coordinates? 
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World vs. Camera Coordinates Example 
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