
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2016 
 

Transformations 5 
 

University of British Columbia 
CPSC 314 Computer Graphics 

Jan-Apr 2016 
 

Tamara Munzner 



2 

Assignments 
•  project 1 

•  out today, due 11:59pm sharp Tue Feb 2 
•  projects will go out before we’ve covered all the material 

•  so you can think about it before diving in 

•  build star-nosed mole out of cubes and 4x4 matrices 
•  think cartoon, not beauty 
•  http://www.ugrad.cs.ubc.ca/~cs314/Vjan2016/p1.pdf 

•  template code gives you program shell 
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2016/p1.zip 

•  theory homework 1 
•  out today, due 2pm sharp Wed Jan 27 (start of class) 
•  theoretical side of material 

•  http://www.ugrad.cs.ubc.ca/~cs314/Vjan2016/h1.pdf 



3 

Real Star-Nosed Moles 

jpg 
http://aninfopage.blogspot.ca/2011/12/star-
nose-mole.html 

http://www.rsba.ca/recherche_espece/
fiche_espece.php?recordID=334 

https://youtu.be/RCB2VT3Nw1I 
http://animals.howstuffworks.com/mammals/
mole-info.htm 

http://www.biokids.umich.edu/critters/
Condylura_cristata/ 



Star-Nosed Moles! 

4 

•  out of boxes and matrices 



5 

Cartoon motion: armadillo jumpcut 



6 

Cartoon motion: armadillo jumpcut 



7 

Project 1 Advice 
•  do not model everything first and only then 

worry about animating 
•  interleave modelling, animation 

•  for each body part: add it, then jumpcut 
animate, then smooth animate 

•  discover if on wrong track sooner 
•  dependencies: can’t get anim credit if no 

model 
•  use body as scene graph root 

•  check from multiple camera angles 



8 

Project 1 Advice 

•  finish all required parts before  
•  going for extra credit 
•  playing with lighting or viewing 

•  construct your 4x4 matrix by hand 
•  without rotate(), translate(), scale() commands 

in Three.js 
•  do not interpolate numbers within matrix 

• even though it’s safe to linearly interpolate 
parameters you use to create matrix 

 



9 

Project 1 Advice 

•  smooth transition 
•  change happens gradually over X frames 
•  key click triggers animation  
•  one way: redraw happens X times 

•  linear interpolation: 
   each time, param += (new-old)/30 

•  or redraw happens over X seconds 
• even better, but not required 



10 

Style 
•  you can lose up to 15% for poor style 
•  most critical: reasonable structure 

•  yes: parametrized functions 
•  no: cut-and-paste with slight changes 

•  reasonable names (variables, functions) 
•  adequate commenting 

•  rule of thumb: what if you had to fix a bug two 
years from now? 

•  global variables are indeed acceptable 



11 

Version Control 
•  bad idea: just keep changing same file 
•  save off versions often 

•  after got one thing to work, before you try starting next 
•  just before you do something drastic 

•  use version control software 
•  strongly recommended: easy to browse previous work, revert 
•  use meaningful comments to describe what you did 

•  “started on tail”, “fixed head breakoff bug”, “leg code compiles but 
doesn’t run” 

•  useful when you’re working alone, critical when working 
together 



12 

General Rotation 



13 

Rotation About a Point: Moving Object 

FW 

translate p  
to origin 

θ

€ 

p = (x,y)

rotate about  
        p by     : θ

rotate about 
origin 

translate p  
back 

€ 

T(x, y, z)R(z,θ)T(−x,−y,−z)



14 

Rotation: Changing Coordinate Systems 

•  same example: rotation around arbitrary 
center 

€ 

T(x, y, z)R(z,θ)T(−x,−y,−z)



15 

Rotation: Changing Coordinate Systems 

•  rotation around arbitrary center 
•  step 1: translate coordinate system to rotation 

center 

€ 

T(x, y, z)R(z,θ)T(−x,−y,−z)



16 

Rotation: Changing Coordinate Systems 

•  rotation around arbitrary center 
•  step 2: perform rotation 

€ 

T(x, y, z)R(z,θ)T(−x,−y,−z)



17 

Rotation: Changing Coordinate Systems 

•  rotation around arbitrary center 
•  step 3: back to original coordinate system 

€ 

T(x, y, z)R(z,θ)T(−x,−y,−z)



18 

General Transform Composition 

•  transformation of geometry into coordinate 
system where operation becomes simpler 
•  typically translate to origin 

•  perform operation 

•  transform geometry back to original 
coordinate system 



19 

Rotation About an Arbitrary Axis 
•  axis defined by two points 
•  translate point to the origin 
•  rotate to align axis with z-axis  (or x or y) 
•  perform rotation 
•  undo aligning rotations 
•  undo translation 



Arbitrary Rotation 

•  arbitrary rotation: change of basis  
•  given two orthonormal coordinate systems XYZ and ABC 

•  A’s location in the XYZ coordinate system is (ax, ay, az, 1), ... 

Y

Z 
X



Arbitrary Rotation 

•  arbitrary rotation: change of basis  
•  given two orthonormal coordinate systems XYZ and ABC 

•  A’s location in the XYZ coordinate system is (ax, ay, az, 1), ... 

Y

Z 
X

Y

Z 
X
(cx, cy, cz, 1) 

(ax, ay, az, 1) 
(bx, by, bz, 1) 



Arbitrary Rotation 

•  arbitrary rotation: change of basis  
•  given two orthonormal coordinate systems XYZ and ABC 

•  A’s location in the XYZ coordinate system is (ax, ay, az, 1), ... 
•  transformation from one to the other is matrix R whose 

columns are A,B,C: 

Y

Z 
X

Y

Z 
X
(cx, cy, cz, 1) 

(ax, ay, az, 1) 
(bx, by, bz, 1) 

€ 

R(X) =

ax bx c x 0
ay by c y 0
az bz cz 0
0 0 0 1

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

1
0
0
1

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

= (ax,ay ,az,1) = A



23 

Transformation Hierarchies 



24 

Transformation Hierarchies 

•  scene may have a hierarchy of coordinate 
systems 
•  stores matrix at each level with incremental 

transform from parent’s coordinate system 

•  scene graph road 

stripe1 stripe2 ... car1 car2 ... 

w1 w3 w2 w4 



25 

Transformation Hierarchy Example 1 

torso 

head RUarm 

RLarm 

Rhand 

RUleg 

RLleg 

Rfoot 

LUarm 

LLarm 

Lhand 

LUleg 

LLleg 

Lfoot 

world 

trans(0.30,0,0) rot(z,  ) θ



26 

Transformation Hierarchy Example 2 

•  draw same 3D data with different 
transformations: instancing 



27 

Matrix Stacks 

•  challenge of avoiding unnecessary 
computation 
•  using inverse to return to origin 
•  computing incremental T1  -> T2 

Object coordinates 

World coordinates 

T1(x) T2(x) 
T3(x) 


