CPSC 314 LIGHTING AND SHADING	THE RENDERING PIPELINE	LIGHTING/SHADING - Goal Model the interaction of light with surfaces to render realistic images - Generate per (pixel/vertex) color	FACTORS
FACTORS	ILLUMINATION MODELSIALGORITHMS	THE BIG PICTURE (BASIC) - Light: energy in a range of wavelengths White ight -al wavelengths \qquad - Surface "color" - reflected wavelength - White- refelect all Ienghs Colored (eq, redel absorbs all but the erefected color - Multiple light sources add (energy sums)	MATERIALS - Surface reflectance: Illuminate surface point with a ray of light from different directions How much light is reflected in each direction?
BASIC TYPES	REFLECTANCE DISTRIBUTION MODEL - Most surfaces exhibit complex reflectances - Vary with incident and reflected directions. - BRDF: Bidirectional Reflectance Distribution Function $\downarrow+2+\infty$	BRDF MEASUREMENTS/PLOTS \qquad	SURFACE ROUGHNESS at a microscopic scale, all real surfaces are rough - cast shadows on themselves - "mask" reflected light
SURFACE ROUGHNESS - notice another effect of roughness: - each "microfacet" is treated as a perfect mirror - incident light reflected in different directions by different facets. - end result is mixed reflectance. smoother surfaces are more specular or glossy random distribution of facet normals results in diffuse reflectance	PHYSICS OF DIFFUSE REFLECTION - ideal diffuse reflection - very rough surface at the microscopic level - real-world example: chalk reflected in any direction mean incoming ray of light equally likely to be - what does the reflected intensity depend on?	LAMBERT'S COSINE LAW ideal diffuse surface reflection the energy reflected by a small portion of a surface from a light source in a given direction is - reflected intensity - independent of viewing direction - depends on surface orientation wrt light - often called Lambertian surfaces	DIFFUSE (LAMBERT) the "beam" intersecting an element of surface area is smaller for greater angles with the normal.

COMPUTING DIFFUSE REFLECTION

PHYSICS OF SPECULAR REFLECTION

- Geometry of specular (perfect mirror) reflection
- Snell's law special case: Law of Reflection

EMPIRICAL APPROXIMATION
Angular falloff

- How to model this falloff?

MULTIPLE LIGHTS

- Light is linear

If multiple rays illuminate the surface point the result is just the sum of
the indivividual refections for each ray
$\sum I_{p}\left(k_{d}\left(n \cdot l_{p}\right)+k_{s}\left(r_{p} \cdot v\right)^{n}\right)$

DIFFUSE LIGHTING EXAMPLES

Lambertian sphere from several lighting angles:
need only consider angles from 0° to 90°

DIFFUSE INTERREFLECTION

EMPIRICAL APPROXIMATION

- Snell's law = perfect mirror-like surfaces : fiew surfaces exhibit perfect speaulurity
-Gaze and refection directions never EXACTY coincide
- Expect most reflected light to travel in direction predicted by

Expect most reflected light to travel in direction predict - Buts La - But some light may

- As angle from ideal reflected ray increases, we expect less ligh
to be reflected

PHONG LIGHTING
Most common lighting model in computer graphics Pronog BuiTionen, 197)
$\mathbf{I}_{\text {specular }}=\mathbf{k}_{\mathrm{s}} \mathbf{I}_{\text {light }}(\cos \phi)^{n_{s}}$
$\mathbf{I}_{\text {specular }}=\mathbf{k}_{s} \mathbf{I}_{\text {light }}(\mathbf{v} \cdot \mathbf{r})^{n_{s}}$
\ddagger firection between r and view itat. purle empirical constant, varies
rate of falloff K. . specular coefficient, highight
color no physical basis, "plastic" look

0000 $000 \cdot$

ALTERNATIVE MODEL

Blinn-Phong model (Jim Blinn, 1977)

- Variation with better physical interpretation
$\cdot \mathrm{h}$: hallway vector; r r roughness
$I_{\text {spocular }}=k_{s} \cdot(\mathbf{h} \cdot \mathbf{n})^{1 / r} \cdot I_{l_{\text {ilith }}} ;$ with $\mathbf{h}=(\mathbf{l}+\mathbf{v}) / 2$

ILLUMINATION EQUATION (PHONG)
LIGHT SOURCES

- If we take the previous formula and add ambient component
- ambient lights
no identifiable source or direction
- hack for replacing true global illumination
- Object illuminated with same light everywhere
- Object illuminated with same light everywher
- Looks like silhouette
$I=I{ }_{n}$
- Illumination equation
$-I_{a}$ - ambient light intensity
$-k_{a}$ -
-raction of this light reflected from surface

$I_{a} k_{a}+\sum_{p} I_{p}\left(k_{d}\left(n \cdot l_{p}\right)+k_{s}\left(r_{p} \cdot v\right)^{n}\right)$

LIght

- Light has color

Interacts with object color (r,g,b)

$I_{a}=\left(I_{a r}, I_{a p}, I_{a s}\right)$
$k_{a}=\left(k_{a b}, k_{a p}, k_{a b}\right)$
$k_{a}=\left(a_{a s}, I_{a s}, a_{a b}\right.$
$I=\left(I_{r}, I_{g}, I_{b}\right)=\left(I_{a} k_{a r}, I_{a s} k_{a s}, I_{a b} k_{a b}\right)$
Blue light on white surface

- Blue light on white surface?

LIGHT AND MATERIAL SPECIFICATION

- Light source: amount of RGB light emitted
- value $=$ intensity per channel

- every light source emits ambient, diffuse, and specular ligh
- Materials: amount of RGB light reflected
${ }^{-}$- value eepresents per
- Interaction: multiply components
\cdot Red light $(1,0,0) \times$ green sufface $(0,1,0)=$ black $(0,0,0)$

WHITEBOARD EXAMPLE

WHITEBOARD EXAMPLE

WHICH LIGHTS/MATERIALS ARE USED HERE?
area lights

- light sources with a finite aree
- more realistic model of many light sources
- much more complex!

RCE TYPES

- light originates at a point

Directional Light (point light at infinity) - Right rays are parallel

Spot Light

- point light with limited angles

LIGHT SOURCE FALLOFF

- Quadratic falloff (point- and spot lights)

The power per unit area for a point or or spot light decreases hits the object The power per unit area for a point or spot light decreases quadratically
with distance

ILLUMINATION EQUATION WITH ATTENUATION

- For multiple light sources:

$$
I=I_{a} k_{a}+\sum_{p} \frac{I_{p}}{A\left(d_{p}\right)}\left(k_{d}\left(n \cdot l_{p}\right)+k_{s}\left(r_{p} \cdot v\right)^{n}\right)
$$

$$
\begin{aligned}
& d_{5} \text { distance between surface and light source + distance } \\
& \text { between sufface and } d \text { viewer. } A \text { - tatenuation function }
\end{aligned}
$$

$$
\begin{aligned}
& d_{\bar{E} \text { distance between surface and ithen source e distai }}^{\text {between surface and viewer, } \mathrm{A} \text { - attenuation function }}
\end{aligned}
$$

APPLYING ILLUMINATION

- we now have an illumination model for a point on a surface if surface defined as mesh of polygonal facets, which points should we
use?
- fariry expensive calculation
several possible answers, each with different implications for visual quality of
result
- polygonal/triangular models
- each facet has a constant surface normal
-ifight is directional, diffuse reflectance is constant across the facel

(2)

VERTEX NORMALS

GOURAUD SHADING ARTIFACTS

GOURAUD SHADING ARTIFACTS

eye enhances discontinuity in first derivative
very disturbing

- very disturbing, especially for hightights

PHONG SHADING

	- not the same as Phong lighting. common contsionPhong lighting: empirical model

SHADING ARTIFACTS: ORIENTATION
interpolation dependent on polygon orientation

PHONG SHADING

- linearly interpolate the vertex normals
- compute lighting equations at each pixel \therefore - compute lighting equations at each $I_{\text {total }}=k_{a} I_{\text {ambien }}+$
$\sum_{i=1} I_{i}\left(k_{d}\left(\mathbf{n} \cdot \mathbf{1}_{\mathbf{i}}\right)+k_{s}\left(\mathbf{v} \cdot \mathbf{r}_{\mathbf{i}}\right)^{n_{s, t a v y}}\right)$
remember: :ormals used in
diffuse and specallar terms
discontinity in normal's srate of
discontinuity in normal'
change harder to detect

GOURAUD SHADING

 - peftom Prong ilghting at the verities- inearyy interpolate the resulting colors over faces

along | - linearly interpolate t t |
| :--- |
| a |
| aiong e eggas |
| along scanines |

this eliminate the facets?

解

GOURAUD SHADING ARTIFACTS

- often appears dull, chalky
- lacks accurate specular component
- if included, will be averaged over entire polygon

this interior shading missed
this vertex shading spread
over too much area

GOURAUD SHADING ARTIFACTS

- arspective transformation
affine combinations only invariant under affine, not under perspective
transtormations
thus, perspective projection alters the linear interpolation.

PHONG SHADING DIFFICULTIES

- more computationally expensive
- per-pixel vector normalization and lighting computation!
-floating point operations
straing pointorward topations requir shaders
- lighting after perspective projection
- messes up the angles between vectors
- have to keep eye-space vectors around

GOURAUD SHADING ARTIFACTS

- perspective transformation problem
- colors slightly "swim" on the surface as objects move relative to the
usually ignored since often only small difference
- usually smaller than changes from lighting variations
to do it right
- either shading in object space

SHADING ARTIFACTS: SILHOUETTES

- or correction for perspective foresthortening
- polygonal silhouettes remain

SHADING MODELS SUMMARY

flat shading

- compute Phong lighting once for entire polygon
- Gouraud shading
- compute Phong lighting at the verices and interpolate lighting values
across polygon
Phong shading
- compute averaged vertex normals
- interpolate normals across polygon and perform Phong lighting across
polygon

SHUTTERBUG: FLAT SHADING

