

University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2016

Tamara Munzner

Hidden Surfaces / Depth Test

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2016

Hidden Surface Removal

THE RENDERING PIPELINE

Occlusion

 for most interesting scenes, some polygons overlap

 to render the correct image, we need to determine which polygons occlude which

The Z-Buffer Algorithm (mid-70's)

- BSP trees proposed when memory was expensive
 - first 512x512 framebuffer was >\$50,000!
- Ed Catmull proposed a radical new approach called z-buffering
- the big idea:
 - resolve visibility independently at each pixel

 we know how to rasterize polygons into an image discretized into pixels:

- what happens if multiple primitives occupy the same pixel on the screen?
 - which is allowed to paint the pixel?

- idea: retain depth after projection transform
 - each vertex maintains z coordinate
 - relative to eye point
 - can do this with canonical viewing volumes

- augment color framebuffer with Z-buffer or depth buffer which stores Z value at each pixel
 - at frame beginning, initialize all pixel depths to ∞
 - when rasterizing, interpolate depth (Z) across polygon
 - check Z-buffer before storing pixel color in framebuffer and storing depth in Z-buffer
 - don't write pixel if its Z value is more distant than the Z value already stored there

Interpolating Z

- barycentric coordinates
 - interpolate Z like other planar parameters

Z-Buffer

- store (r,g,b,z) for each pixel
 - typically 8+8+8+24 bits, can be more

```
for all i,j {
  Depth[i,j] = MAX_DEPTH
  Image[i,j] = BACKGROUND_COLOUR
}
for all polygons P {
  for all pixels in P {
    if (Z_pixel < Depth[i,j]) {
        Image[i,j] = C_pixel
        Depth[i,j] = Z_pixel
    }
  }
}</pre>
```

Depth Test Precision

reminder: <u>perspe</u>ctive transformation maps

• reminder: perspective transformation map eye-space (VCS)
$$z$$
 to NDC z

$$\begin{bmatrix}
E & 0 & A & 0 \\
0 & F & B & 0 \\
0 & 0 & C & D \\
0 & 0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
x \\ y \\ z \\ 1
\end{bmatrix} = \begin{bmatrix}
Ex + Az \\ Fy + Bz \\ Cz + D \\ -z
\end{bmatrix} = \begin{bmatrix}
-\left(\frac{Ex}{z} + A\right) \\
-\left(\frac{Fy}{z} + B\right) \\
-\left(C + \frac{D}{z}\right)
\end{bmatrix}$$
• thus:

• thus:

$$z_{NDC} = -\left(C + \frac{D}{z_{VCS}}\right)$$

Depth Test Precision

- therefore, depth-buffer essentially stores 1/z, rather than z!
- issue with integer depth buffers
 - high precision for near objects
 - low precision for far objects

Depth Test Precision

- low precision can lead to depth fighting for far objects
 - two different depths in eye space get mapped to same depth in framebuffer
 - which object "wins" depends on drawing order and scanconversion
- gets worse for larger ratios f:n
 - rule of thumb: f:n < 1000 for 24 bit depth buffer
- with 16 bits cannot discern millimeter differences in objects at 1 km distance

Integer Depth Buffer

- reminder from viewing discussion
 - depth lies in the DCS z range [0,1]
- format: multiply by 2ⁿ -1 then round to nearest int
 - where n = number of bits in depth buffer
- 24 bit depth buffer = 2^24 = 16,777,216 possible values
 - small numbers near, large numbers far
- consider VCS depth: $z_{DCS} = (1 << N)^*(a + b / z_{VCS})$
 - N = number of bits of Z precision, 1<<N bitshift = 2ⁿ
 - a = zFar / (zFar zNear)
 - b = zFar * zNear / (zNear zFar)
 - z_{VCS} = distance from the eye to the object

Z Buffer Calculator

- demo:
 - https://www.sjbaker.org/steve/omniv/love_your_z_buffer.html

Z-Buffer Algorithm Questions

- how much memory does the Z-buffer use?
- does the image rendered depend on the drawing order?
- does the time to render the image depend on the drawing order?
- how does Z-buffer load scale with visible polygons? with framebuffer resolution?

Z-Buffer Pros

- simple!!!
- easy to implement in hardware
 - hardware support in all graphics cards today
- polygons can be processed in arbitrary order
- easily handles polygon interpenetration
- enables deferred shading
 - rasterize shading parameters (e.g., surface normal) and only shade final visible fragments

Z-Buffer Cons

- poor for scenes with high depth complexity
 - need to render all polygons, even if most are invisible

- shared edges are handled inconsistently
 - ordering dependent

Z-Buffer Cons

- requires memory
 - (e.g. 1280x1024x32 bits)
- requires fast memory
 - Read-Modify-Write in inner loop
- hard to simulate translucent polygons
 - we throw away color of polygons behind closest one
 - works if polygons ordered back-to-front
 - extra work throws away much of the speed advantage

Picking

Interactive Object Selection

- move cursor over object, click
 - how to decide what is below?
 - inverse of rendering pipeline flow
 - from pixel back up to object: unprojecting
- ambiguity
 - many 3D world objects map to same 2D point
- two common approaches
 - ray intersection (three.js support)
 - off-screen buffer color coding
- other approaches
 - bounding extents
 - deprecated: OpenGL selection region with hit list

Ray Intersection Picking

- computation in software within application
 - map selection point to a ray

intersect ray with all objects in scene.

- advantages
 - flexible, straightforward
 - supported by three.js
- disadvantages
 - slow: work to do depends on total number and complexity of objects in scene

VCS

Three.js Intersection Support

http://soledadpenades.com/articles/three-js-tutorials/object-picking/

- projector = new THREE.Projector();
- mousevector = new THREE.Vector3();
- window.addEventListener('mousemove', onMouseMove, false)
- onmouseMove:
 - mouseVector.x=2*(e.clientX/containerWidth)-1
 - mouseVector.y=1-2*(e.clientY/containerHeight);
 // don't forget to flip Y from upper left origin!
 - var raycaster = projector.pickingRay(mouseVector.clone(), camera);
 - var intersects = raycaster.intersectObjects(<geoms>);

three.js Intersection

http://soledadpenades.com/articles/three-js-tutorials/object-picking/

- intersectObjects function returns array
 - all ray intersections for children of root geometry
 - ordered by distance, nearest first
- intersection object contains
 - distance from camera
 - exact point
 - face
 - object

Offscreen Buffer Color Coding

- use offscreen buffer for picking
 - create image as computational entity
 - never displayed to user
- redraw all objects in offscreen buffer
 - turn off lighting/shading calculations
 - set unique color for each pickable object
 - store in table
 - read back pixel at cursor location
 - check against table

Offscreen Buffer Color Coding

- advantages
 - conceptually simple
 - variable precision
 - hardware support

- off-screen buffer creation/readback
- disadvantages
 - extra redraw delay (fixed overhead)
 - implementation complexity

WebGL Offscreen Buffer Picking

http://coffeesmudge.blogspot.ca/2013/08/implementing-picking-in-webgl.html

- create offscreen framebuffer
 - like rendering into texture
- render each object with unique color in framebuffer (up to 16M with 24 bit integers)
- gl.readPixels readback to find color under cursor
- look up object with that color
 - color[0]*65536 + color[1]*256 + color[2]

Bounding Extents

 keep track of axis-aligned bounding rectangles

- advantages
 - conceptually simple
 - easy to keep track of boxes in world space

Bounding Extents

- disadvantages
 - low precision
 - must keep track of object-rectangle relationship
- extensions
 - do more sophisticated bound bookkeeping
 - first level: box check.
 - second level: object check

OpenGL vs WebGL Picking

- very different world, don't get confused by old tutorials
- OpenGL
 - fast hardware support for select/hit
 - re-render small area around cursor
 - backbuffer color
 - straighforward but slow without hardware support
 - no standard library support for ray intersection
 - slow and laborious
- WebGL
 - good library support for intersection
 - best choice for most of you!
 - fast offscreen buffer hardware support
 - select/hit unsupported

Painter's Algorithm

 simple: render the polygons from back to front, "painting over" previous polygons

- draw blue, then green, then orange
- will this work in the general case?

Painter's Algorithm: Problems

- intersecting polygons present a problem
- even non-intersecting polygons can form a cycle with no valid visibility order:

Analytic Visibility Algorithms

 early visibility algorithms computed the set of visible polygon fragments directly, then rendered the fragments to a display:

Analytic Visibility Algorithms

- what is the minimum worst-case cost of computing the fragments for a scene composed of n polygons?
- answer:
 O(n²)

Analytic Visibility Algorithms

- so, for about a decade (late 60s to late 70s) there was intense interest in finding efficient algorithms for hidden surface removal
- we'll talk about one:
 - Binary Space Partition (BSP) Trees

Binary Space Partition Trees (1979)

- BSP Tree: partition space with binary tree of planes
 - idea: divide space recursively into half-spaces by choosing splitting planes that separate objects in scene
 - preprocessing: create binary tree of planes
 - runtime: correctly traversing this tree enumerates objects from back to front

Splitting Objects

- no bunnies were harmed in previous example
- but what if a splitting plane passes through an object?
 - split the object; give half to each node

Traversing BSP Trees

- tree creation independent of viewpoint
 - preprocessing step
- tree traversal uses viewpoint
 - runtime, happens for many different viewpoints
- each plane divides world into near and far
 - for given viewpoint, decide which side is near and which is far
 - check which side of plane viewpoint is on independently for each tree vertex
 - tree traversal differs depending on viewpoint!
 - recursive algorithm
 - recurse on far side
 - draw object
 - recurse on near side

Traversing BSP Trees

query: given a viewpoint, produce an ordered list of (possibly split) objects from back to front:

```
renderBSP(BSPtree *T)
 BSPtree *near, *far;
 if (eye on left side of T->plane)
     near = T->left; far = T->right;
 else
     near = T->right; far = T->left;
 renderBSP(far);
 if (T is a leaf node)
     renderObject(T)
  renderBSP(near);
```


not just left or right child!

BSP Tree Traversal: Polygons

- split along the plane defined by any polygon from scene
- classify all polygons into positive or negative half-space of the plane
 - if a polygon intersects plane, split polygon into two and classify them both
- recurse down the negative half-space
- recurse down the positive half-space

BSP Demo

useful demo:

http://symbolcraft.com/graphics/bsp

BSP Example

order of insertion can affect half-plane extent

Summary: BSP Trees

pros:

- simple, elegant scheme
- correct version of painter's algorithm back-to-front rendering approach
- was very popular for video games (but getting less so)

cons:

- slow to construct tree: O(n log n) to split, sort
- splitting increases polygon count: O(n²) worst-case
- computationally intense preprocessing stage restricts algorithm to static scenes

Hidden Surface Removal

- two kinds of visibility algorithms
 - object space methods
 - image space methods

Object Space Algorithms

- determine visibility on object or polygon level
 - using camera coordinates
- resolution independent
 - explicitly compute visible portions of polygons
- early in pipeline
 - after clipping
- requires depth-sorting
 - painter's algorithm
 - BSP trees

Image Space Algorithms

- perform visibility test for in screen coordinates
 - limited to resolution of display
 - Z-buffer: check every pixel independently
- performed late in rendering pipeline

THE RENDERING PIPELINE

 on the surface of a closed orientable manifold, polygons whose normals point away from the camera are always

- not rendering backfacing polygons improves performance
 - by how much?
 - reduces by about half the number of polygons to be considered for each pixel
 - optimization when appropriate

- most objects in scene are typically "solid"
- rigorously: orientable closed manifolds
 - orientable: must have two distinct sides
 - cannot self-intersect
 - a sphere is orientable since has two sides, 'inside' and 'outside'.
 - a Mobius strip or a Klein bottle is not orientable
 - closed: cannot "walk" from one side to the other
 - sphere is closed manifold
 - plane is not

- examples of non-manifold objects:
 - a single polygon
 - a terrain or height field
 - polyhedron w/ missing face
 - anything with cracks or holes in boundary
 - one-polygon thick lampshade

Back-face Culling: VCS

first idea:

 ${\rm cull\ if}\ N_Z<0$

sometimes misses polygons that should be culled

Back-face Culling: NDCS

Invisible Primitives

- why might a polygon be invisible?
 - polygon outside the field of view / frustum
 - solved by clipping
 - polygon is backfacing
 - solved by backface culling
 - polygon is occluded by object(s) nearer the viewpoint
 - solved by hidden surface removal

Blending

THE RENDERING PIPELINE

Alpha and Premultiplication

- ullet specify opacity with alpha channel lpha
 - α =1: opaque, α =.5: translucent, α =0: transparent
- how to express a pixel is half covered by a red object?
 - obvious way: store color independent from transparency (r,g,b,α)
 - intuition: alpha as transparent colored glass
 - 100% transparency can be represented with many different RGB values
 - pixel value is (1,0,0,.5)
 - upside: easy to change opacity of image, very intuitive
 - downside: compositing calculations are more difficult not associative
 - elegant way: premultiply by α so store (α r, α g, α b, α)
 - intuition: alpha as screen/mesh
 - RGB specifies how much color object contributes to scene
 - alpha specifies how much object obscures whatever is behind it (coverage)
 - alpha of .5 means half the pixel is covered by the color, half completely transparent
 - only one 4-tuple represents 100% transparency: (0,0,0,0)
 - pixel value is (.5, 0, 0, .5)
 - upside: compositing calculations easy (& additive blending for glowing!)
 - · downside: less intuitive

Alpha and Simple Compositing

- F is foreground, B is background, F over B
- premultiply math: uniform for each component, simple, linear
 - R' = $R_F + (1 A_F) R_B$
 - $G' = G_F + (1 A_F) * G_B$
 - B' = $B_F + (1 A_F)^* B_B$
 - $A' = A_F + (1 A_F)^* A_B$
 - associative: easy to chain together multiple operations
- non-premultiply math: trickier
 - R' = $(R_F^*A_F + (1-A_F)^*R_B^*A_B)/A'$
 - $G' = (G_F^*A_F + (1-A_F)^*G_B^*A_B)/A'$
 - B' = $(B_F^*A_F + (1-A_F)^*B_B^*A_B)/A'$
 - $A' = A_F + (1 A_F)^* A_B$
 - don't need divide if F or B is opaque. but still... oof!
 - chaining difficult, must avoid double-counting with intermediate ops

Alpha and Complex Compositing

- foreground color A, background color B
- how might you combine multiple elements?
 - Compositing Digital Images, Porter and Duff, Siggraph '84
 - pre-multiplied alpha allows all cases to be handled simply

Alpha Examples

- blend white and clear equally (50% each)
 - white is (1,1,1,1), clear is (0,0,0,0), black is (0,0,0,1)
 - premultiplied: multiply componentwise by 50% and just add together
 - (.5, .5, .5) is indeed half-transparent white in premultiply format
 - 4-tuple would mean half-transparent grey in non-premultiply format
- premultiply allows both conventional blend and additive blend
 - alpha 0 and RGB nonzero: glowing/luminescent
 - (nice for particle systems!)
- for more: see nice writeup from Alvy Ray Smith
 - technical academy award for Smith, Catmull, Porter, Duff
 - http://www.alvyray.com/Awards/AwardsAcademy96.htm