University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2016

Tamara Munzner

Final Review 2

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2016

Viewing, Continued

Review: From VCS to NDCS

perspective view volume orthographic view volume

y=top
x=left //

y
\ z ‘/KA/ x=right
[VCS \
VCS . y=bottom Z=-near z=-far X / /T=-far
x=right y=bottom _ ear
NDCS orthographic camera
\y (1,1,1) - center of projection at
| < 2 infinity
(-1,-1,-1) \ X * no perspective

— convergence 3

Review: Orthographic Derivation

* scale, translate, reflect for new coord sys

. ‘/K//\

VCS
x=left (\
y /

x=right

y=bottom

/z=-far

Z=-near

NDCS

(-1,-1,-1)

%

(1,1,1)

Review: Orthographic Derivation

* scale, translate, reflect for new coord sys

2 0 0 _ right +left
right — left right — left
0 2 0 _ top +bot
P = top — bot top —bot | p
0 0 -2 _ Jar + near
far — near far — near
0 0 0 1

Review: Projection Normalization

* warp perspective view volume to orthogonal

view volume

* render all scenes with orthographic projection!

 aka perspective warp

z=qz=d

z=0|

z=d

Review: Separate Warp From Homogenization

viewing clipping normalized

VCS V2C CCS C2N device
NDCS

: projection |— .| perspective
transformation division

alter w | w

* warp requires only standard matrix multiply

» distort such that orthographic projection of
distorted objects is desired persp projection

* W IS changed
* clip after warp, before divide

» division by w: homogenization

Review: Perspective Derivation

 shear

« change x/y if asymmetric
r/l, t/b

» scale
* projection-normalization
* pre-warp according to z

B
N\

z=-far

x=right

r+l

0

0
r—1 r—1
o 2 by
t-b t-b
0 —(f+n) =-2fn
f-n f-n
_ 0 0 -1 0 |
NDCS
@(1,1,1)
y 4
(-1,-1,-1)\ \x
x|

Review: N2D Transformation

0 0 [width(x, +1)-1]
10 0 0]x,])
0 0 0 =1 0 0 yy helght(—yN + 1) -1
= 2
depth 00 1 0}z depth(z, +1)
5 0 0 0 1|1 >
0 1| S 1

NDC z range is -1 to 1

10 wzdth_l width 0
[x 2 2
u height 1 height
Vb 0 1 gt _ -~ g
| 2 2 2
D
71 lo o1 defz’”’ 0 0
0 0 0 1 0 0
reminder:

y

Display z range is 0 to 1.
glDepthRange(n,f) can constrain
further, but depth =1 is both

max and default

e 1]
Oy height

viewport

width

Review: Pr

following pipeline from top/left to
scene.add(x) | RPottom/right: moving object POV

THREE.PerspectiveCamera(...)

object world viewing alter w
ocs 92W wcs W2V ygs V2C
modeling viewing pI'Ojei(::tIOI‘l
— ; — : —| transformation .
transformation transformation Cllppln g
m.makeTranlation(x,y,z) camera.lookAt(...) I w
m.makeRotation(a,x,y,z) C2N CCS
x.setMatrix(m) perspective lized
_ , divisi normaliz
OCS - object coordinate system viston ormafize
canvas.{w,h} N2D device
WCS - world coordinate system gl.viewport(x,y,a,b) | NDCS
VCS - viewing coordinate system :llewport .
ransformation
CCS - clipping coordinate system l device
NDCS - normalized device coordinate system DCS

DCS - device coordinate system 0

Review: WebGL Example

go back from end of pipeline to beginning: coord frame POV!

object world viewing cliooin

ocs OW wes W2V 'yes © vac “ggg™s
modeling viewing projection

~’| transformation | | transformation || transformation

CCS
gl.viewport(0,0,w,h);

VCS

THREE.PerspectiveCamera(view angle, aspect, near, far)

WCS u xformMatrix = Identity()
gl.uniformMatrix4fv(u xformMatrix, false, xformMatrix);

OCS1 |
torsoGeometry.applyMatrix(u_xformMatrix);
var torso = new THREE.Mesh(torsoGeometry,normalMaterial);

scene.add(torso); 11

Review: Coord Sys: Frame vs Point

read down: transforming read up: transforming points,
between coordinate frames, up from frame B coords to
from frame A to frame B frame A coords

GL command order

DCS displa
D2N gl.viewport(x,y, a¥)

NDCS normalized devide
N2V THREE.PerspectiveCamera(...) V2N

VCS viewing
V2W camera.lookAt(...) W2V

WCS world
W20 m.makeRotationX(...) O2W

OCS object

scene.add(object)

N2D

‘ pipeline interpretation

Post-Midterm Material

13

OPENGL RENDERING PIPELINE

Scene Camera Device Coords
Vertices
and attributes
_> Vertex Shader _} Vertex Post- _) Rasterization|. __)
Processing
—) Fragment Shader — Per-Sample ——) Framebuffer
Operations

Image

Vertex buffer

VERTEX SHADER

Uniform variables

» | Vertex shader

Attributes

o & 0 O
>

gl_Position
Varying variables

Assembler

Varying variables

FRAGMENT SHADER

Uniform variables

Fragment shader

Screen color

d

° o e = °

Frame buffer

OPENGL RENDERINGPIPELINE

Vertices
and

attributes

Vertex Shader

Modelview transform

Per-vertex attributes

Rasterization

Scan conversion

Interpolation

—>

—>

Per-Sample Operations

Depth test

Blending

Vertex Post-Processing
Viewport transform

Clipping

Fragment Shader

Texturing/...

Lighting/shading

—> Framebuffer

Clipping/Rasterization/Interpolation

18

Review: Clipping

 analytically calculating the portions of
primitives within the viewport

/

S

19

Review: Clipping W <X <W,
[] [] []] [] _WC < yc < WC
» Perform clipping in clip-coordinates!
L . -W, <7 <W,
 After projection and before dividing by w
Vertex Shader
Modelview transform
Vertices delli i —
5 traTs(:’oremggon Itransi\’/oer:r\zation ——> | projection =
Object World Camera Clip
Coordinate Coordinate Coordinate Coordinate
Systean System System System
' Per-vertex attributes
Vertex Post-Processing
. perspective viewport
—> | clipping divide > | transform | — .
Normalized indow
Device Coordinates
Coordinates

Review: Clipping coordinates

* Eye coordinates (projected) - clip coordinates -
normalized device coordinates (NDCs)

- Dividing clip coordinates (X_,y.,2.,W,)
by the w (w.=w) component (the fourth component in

the homogeneous coordinates) yields normalized device
coordinates (NDCs).

s. 0 —c 0
xw X X
0 s, ¢, 0
ynwn _ y _ 2 y pl
- - +n
W, Z 0 0 / - Ji Z \
-n -n [4
W, W 1 (B*
O O _1 O z'::o: rrrrrrrr

21

Review: Scan Conversion

« convert continuous rendering primitives into discrete

fragments/pixels

 given vertices in DCS, fill in the pixels
* display coordinates required to provide scale for

discretization

e

-

o/lc

o2un

/

L

22

Review: Scanline ldea

» scanline: a line of pixels in an image
e basic structure of code:

« Setup: compute edge equations, bounding box
 (Outer loop) For each scanline in bounding box...

* (Inner loop) ...check each pixel on scanline, evaluating
edge equations and drawing the pixel if all three are
positive ass

Review: Bilinear Interpolation

* Interpolate quantity along L and R edges,
as a function of y

* then interpolate quantity as a function of x

P,

24

Review: Bilinear interpolation

G, ¢

P=

b+
¢ +¢, ¢ +¢,

PR

&, ,, d

P =
Yd+d, b d+d,

h

P st p
b+b, ~ b +b,

P= CZ d2 P2+ dl P3+ Cl b2 P2+ bl Pl
c+c,\d+d, ~ d+d, ¢, +¢,\b+b, = b +D,

Review: Barycentric Coordinates

» weighted (affine) combination of vertices

P=aB+f-P +yP

£ (1,0,0)
a+p+y=1 a, =0
O SO!,ﬂ,)fSI (050!1) a2 =05

P, (0,1,0

Review: Computing Barycentric

| Coordinates
2D triangle area (a,B,y) =

F (1,0,0)
* half of parallelogram area
 from cross product

) (0B =
A= Ap1 +AP2 +AP3 &,0?1)
g
A=_|RP,xEP, ROtk
B = APZ /A

weighted combination of three points
Y = Apz/A

27

Lighting/Shading

28

Review: Reflectance

e specular: perfect mirror with no scattering
e gloss: mixed, partial specularity
 diffuse: all directions with equal energy

AN N X

specular + glossy + diffuse =
reflectance distribution

29

Review: Reflection Equations

/ n
Lyitfuse = Ka Liighe (M 1) . i i‘

n.,. =\
shin - ’\ vV
Ispecular = ksIlight (V ° l') Y _ 1 N
_ L / bpLF
R=2(NIN-L)-L ‘ sl A
Ispecular = ksIlight (h ° Il) hiny

h=10+v)/2 m
I+ v) S hi{[m .
reminder: normalize all vectors: n,l,r,v,h l 30

Review: Reflection Equations

full Phong lighting model

— combine ambient, diffuse, specular components
#lights

Itotal = kaIambient + EII (kd (n ¢ ll) + ks(v * ri)nShiny)
i=1

* Blinn-Phong lighting
#lights

Itotal = kaIambient + E Ii (kd (n * ll) + ks (h ¢ ni)nShiny)
i=1

— don’ t forget to normalize all lighting vectors!! n,l,r,v,h

31

Review: Lighting

* lighting models
— ambient
* normals don’t matter

— Lambert/diffuse
e angle between surface normal and light

— Phong/specular
e surface normal, light, and viewpoint
* light and material interaction

— component-wise multiply
* (ILlglp) x (m,mgmy) = (I*m,, [.*m,, |;*m,)

Review: Light Sources

* directional/parallel lights
e point at infinity: (x,y,z,0)"

* point lights
* finite position: (x,y,z,1)"

* spotlights

e position, direction, angle

* ambient lights

33

Review: Light Source Placement

e geometry: positions and directions

— standard: world coordinate system
» effect: lights fixed wrt world geometry

— alternative: camera coordinate system
» effect: lights attached to camera (car headlights)

Review: Shading Models

* flat shading
— for each polygon
* compute Phong lighting just once
* Gouraud shading
— compute Phong lighting at the vertices
— for each pixel in polygon, interpolate colors

* Phong shading

— for each pixel in polygon
* interpolate normal
 compute Phong lighting

35

Review: Non-Photorealistic Shading

l+n-1

* cool-to-warm shading: &, = c=kc +(0-k,)c,
e draw silhouettes: if (e-ny)(e-n,)<0 e=edge-eye vector

* draw creases: if (n, n,) < threshold

standard cool-to-warm with edges/creases

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html *

Texturing

Review: Texture Coordinates

texture image: 2D array of color values (texels)

assigning texture coordinates (u,v) at vertex with object
coordinates (x,y,z,w)

— sometimes called (s,t) instead of (u,v)

— use interpolated (u,v) for texel lookup at each pixel

— use value to modify a polygon color or other property
— specified by programmer or artist

38

Review: Tiled Texture Map
T @)
=\-|

i

Texture ° Object Mapped Texture

\"-\.

T

clamp vs repeat

—-___—df

(4,0) 1.

|

Tex (0,4) Mapped Texture

(0,0)

39

Review: Fractional Texture Coordinates

texture
image

(0,.5) (.25,.5)

(0,0) (1,0) (0,0) (-25,0)

40

Review: MIPmapping

* image pyramid, precompute averaged versions
— avoid aliasing artifacts
— only requires 1/3 more storage

Without MIP-mapping

. e
1 -

64 x 64 32x32

With MIP-mappiﬁg

Review: Bump Mapping: Normals As Texture

e create illusion of complex
geometry model

e control shape effect by locally W
perturbing surface normal

-+ c—
s N O b
N
f :
| -
|
,? -
ot g £

]

%
/

Review: Displacement Mapping

* bump mapping gets
silhouettes wrong ORIGINAL MESH
* shadows wrong too

* change surface geometry AB C

instead

* only recently available DERLACEVENT MY
with realtime graphics

* need to subdivide surface

MESH WITH DISPLACEMENT

https://en.wikipedia.org/wiki/Displacement_map ping#/media/File:Displacement.jpg

Review: Environment Mapping
* cheap way to achieve reflective effect
— generate image of surrounding
— map to object as texture
* sphere mapping: texture is distorted fisheye view

— point camera at mirrored sphere

— use spherical texture coordinates

Review: Environment Cube Mapping

* 6 planar textures, sides of cube

* point camera in 6 different directions,
facing out from origin

Review: Perlin Noise as Procedural Texture

* several good explanations

* http://www.noisemachine.com/talkl
* http://freespace.virgin.net/hugo.elias/models/m_perlin.htm

* http://www.robo-murito.net/code/perlin-noise-math-fag.html

http://mrl.nyu.edu/~perlin/planet/

Review: Perlin Noise

e coherency: smooth not abrupt changes
e turbulence: multiple feature sizes

... 47

Ray Tracing

Review: Recursive Ray Tracing

ray tracing can handle

— reflection (chrome/mirror)
— refraction (glass) Eye [T
— shadows

one primary ray per pixel
spawn secondary rays

— reflection, refraction

* if another object is hit, recurse to find
its color

— shadow

e cast ray from intersection point to
light source, check if intersects
another object

— termination criteria
* no intersection (ray exits scene) Refracted
* max bounces (recursion depth) Ray
e attenuated below threshold

Reflected
Ray

Shadow

Rays

49

Review: Reflection and Refraction

* reflection: mirror effects
— perfect specular reflection

* refraction: at boundary

e Snell’ s Law

— light ray bends based on
refractive indices c,, ¢,

¢, sinf, =c,sno,

Review: Ray Tracing

* |ssues:
— generation of rays
— intersection of rays with geometric primitives
— geometric transformations
— lighting and shading

— efficient data structures so we don’ t have to test
intersection with every object

Backstory: 2D Parametric Lines

p(-1.0)

X

Y.

X, + 1(x, - xo)-

Yo+ 1Y =Yy

‘P@) =p, +1(P, —Py)
"p(¢)=0+1(d)

* start at point p,
go towards p,,

according to parameter t

— p(0) = pg, P(1) = p4

Review: Ray-Sphere Intersections, Lighting

* Intersections: solving a set of equations

— Using implicit formulas for primitives

* Directillumination: gradient of implicit surface

Example: Ray-Sphere intersection Example: Sphere normals
rayx(0)=p, +v,0, 0= p, +0, 2)=p.+0l v (2%
(unit) sphere: x” +y” +2° =1 / n(x, v, Z) = 2y
quadratic equation in t : P

(%7

0=(p, +v.0)" +(p, +v,0)" +(p. +v.)" -1

= tz(vi +v§ +vz2)+21(va)C +p,v, +p.v,)

+Hp, +p, +p.)-1

Procedural/Collision

54

Review: Procedural Modeling

* textures, geometry
— nonprocedural: explicitly stored in memory

e procedural approach

— compute something on the fly
* not load from disk

— often less memory cost
— visual richness
* adaptable precision

* noise, fractals, particle systems

Review: Language-Based Generation

Initiator
Length=1

* L-Systems
— F: forward, R: right, L: left /N Generator

Length=4/3

— Koch snowflake: J_FAZ_&
F = FLFRRFLF Longth-16/9
— Mariano’s Bush: m
F=FF-[-F+F+F]+[+F-F-F] Longu-otrn
e angle 16

http://spanky.triumf.ca/www/fractint/Isys/plants.html

Review: Fractal Terrain

* 1D: midpoint displacement A
— divide in half, randomly displace /\
— scale variance by half

e 2D: diamond-square /FA\

— generate new value at midpoint @)

— average corner values + random displacement
 scale variance by half each time

N A

http://www.gameprogrammer.com/fractal.html

57

Review: Particle Systems
* changeable/fluid stuff

— fire, steam, smoke, water, grass, hair, dust,
waterfalls, fireworks, explosions, flocks

* life cycle
— generation, dynamics, death

* rendering tricks

— avoid hidden surface computations

Review: Collision Detection

* boundary check
— perimeter of world vs. viewpoint or objects
e 2D/3D absolute coordinates for bounds
* simple point in space for viewpoint/objects
* set of fixed barriers
— walls in maze game
» 2D/3D absolute coordinate system
* set of moveable objects
— one object against set of items
* missile vs. several tanks
— multiple objects against each other

* punching game: arms and legs of players
* room of bouncing balls

Review: Collision Proxy Tradeoffs

e collision proxy (bounding volume) is piece of geometry used to
represent complex object for purposes of finding collision

e proxies exploit facts about human perception
e we are bad at determining collision correctness
e especially many things happening quickly

il

Sphere AABB 6-dop Convex Hull

increasing complexity & tightness of fit

60

decreasing cost of (overlap tests + proxy update)

Review: Spatial Data Structures

uniform grids BSP trees
bounding volume hierarchies kd-trees
octrees OBB trees

PN

61

Hidden Surfaces / Picking / Blending

Review: Z-Buffer Algorithm

e augment color framebuffer with Z-buffer or
depth buffer which stores Z value at each pixel
— at frame beginning, initialize all pixel depths to o

— when rasterizing, interpolate depth (Z) across
polygon

— check Z-buffer before storing pixel color in
framebuffer and storing depth in Z-buffer

— don’t write pixel if its Z value is more distant than
the Z value already stored there

Review: Depth Test Precision

— reminder: perspective transformation maps eye-space

(VCS) zto NDC z (Ex)
- —+A

:] : Z

E 0 A O X Ex+ Az F
0 F B 0 | v | | Fyv+Bz |_ —(—y+3)

0 0 ¢ D| Cz+D <
0 0 -1 0 | 1 _; _(C+2)
i <

(D) o —fEm) 2 1

Zwpe =—| C+ -n -n
Lycs

— thus: depth buffer essentially stores 1/z (for VCS z)

— high precision for near, low precision for distant

Review: Integer Depth Buffer

* reminder from viewing discussion: depth ranges
— VCS range [zNear, zFar], NDCS range [-1,1], DCS z range [0,1]
e convert fractional real number to integer format
— multiply by 2”n then round to nearest int
— where n = number of bits in depth buffer
e 24 bit depth buffer = 2724 = 16,777,216 possible values
— small numbers near, large numbers far
* consider VCS depth: z. = (1<<N)*(a+b / z)
— N = number of bits of Z precision, 1<<N bitshift = 2"
— a=zFar / (zFar - zNear)
— b =zFar * zNear / (zNear - zFar)
— 2, = distance from the eye to the object

Full derivation at https://www.opengl.org/archives/resources/fag/technical/depthbuffer.htm
65

Review: Picking Methods

* raycaster intersection support w__—&

VCS

* offscreen buffer color coding

* bounding extents m
: s .

66

Review: Painter’s Algorithm

* draw objects from back to front

e problems: no valid visibility order for
— intersecting polygons
— cycles of non-intersecting polygons possible

67

Review: BSP Trees

e preprocess: create binary tree
— recursive spatial partition

— viewpoint in’dependent

Review: BSP Trees

* runtime: correctly traversing this tree enumerates objects
from back to front

— viewpoint dependent: check which side of plane viewpoint
is on at each node

— draw far, draw object in question,
draw near

Review: Object Space Algorithms

determine visibility on object or polygon level
— using camera coordinates

resolution independent

— explicitly compute visible portions of polygons
early in pipeline

— after clipping

requires depth-sorting

— painter’s algorithm

— BSP trees

Review: Image Space Algorithms

— perform visibility test for in screen coordinates
* |imited to resolution of display
e Z-buffer: check every pixel independently

— performed late in rendering pipeline

Review: Back-face Culling

\
A
A =

VCS: cull if angle between eye-
NDCS face vector and normal > 90

y -
eye N\ L, NDCS: cullif NV, >0

72

Review: Invisible Primitives

* why might a polygon be invisible?
— polygon outside the field of view / frustum
* solved by clipping
— polygon is backfacing
* solved by backface culling
— polygon is occluded by object(s) nearer the viewpoint
* solved by hidden surface removal

73

Review: Blending with Premultiplied Alpha

* specify opacity with alpha channel a
— o=1: opaque, a=.5: translucent, a=0: transparent

* how to express a pixel is half covered by a red object?
— obvious way: store color independent from transparency (r,g,b,o)

* intuition: alpha as transparent colored glass
— 100% transparency can be represented with many different RGB values

* pixel valueis (1,0,0,.5)

* upside: easy to change opacity of image, very intuitive

* downside: compositing calculations are more difficult - not associative
— elegant way: premultiply by o so store (ar, ag, ab,a)

* intuition: alpha as screen/mesh
— RGB specifies how much color object contributes to scene
— alpha specifies how much object obscures whatever is behind it (coverage)
— alpha of .5 means half the pixel is covered by the color, half completely transparent
— only one 4-tuple represents 100% transparency: (0,0,0,0)
* pixel valueis (.5, 0,0, .5)
* upside: compositing calculations easy (& additive blending for glowing!)

e downside: less intuitive

Color

75

Relative Power N

o

Backstory & Review: Trichromacy

* trichromacy
— three types of cones: S, M, L
— color is combination of cone stimuli
 different cone responses: area function of wavelength
e for a given spectrum
— multiply by responses curve
— integrate to get response

Input Stimulus Cone Response Curves Product » Response
1 1 Integrate
2
=
:%‘
C
(O]
@ S / II
©
(0]
Q.
(%) /
0 0 =
400 700 400 700 400 700 SML

From A Field Guide to Digital Color, © A.K. Peters, 2003

Review: Metamers

* brain sees only cone response
— different spectra appear the same: metamers

Pure Spectural Mixed-spectra

Color Metamer §
s] sr——— |2
1 — I — Z
L L S §

Wavelength (nm)

Review: Measured vs. CIE XYZ Color Spaces

Stiles-Burch, negative lobe CIE standard, all positive
T T — T r_ A/ T T T T T 1
— - 1 6 = . " I'<‘ —
- 2 - v I'
— o] |
; [=1 : — | | N—
*_L: = | - -
?/ e = — _3 o I' y ” -
E' E %2 || '.
c b \ - N i
0.4 II =
OF — Y a — S S ‘1‘
400 500 700 400 500 700
Wavelength (nm) Wavelength (nm)

e transformed basis
— “imaginary” lights
— all positive, unit area

* measured basis
— monochromatic lights

— physical observations

— negative lobes — Yis luminance

78

Backstory: Spectral Sensitivity Curve

1.0
\
. 0.8 / \
2 / \
> \
2 06 / \
: / \
% 0.4 / \\\
= 0.2
/ \
0 -
400 500 600 700

Wavelength (nm)

-
< >
Visible Spectrum

Review: CIE Chromaticity Diagram and Gamuts

* plane of equal brightness showing chromaticity

 gamut is polygon, device primaries at corners
— defines reprodﬁycible color range

HHHHRIK

Review: %
Blackbody s -
Curve 0.7-
* illumination: 60
— candle 0.6
2000K 500-
— A: Light bulb 0.5 580
3000K y 4000 300025
— sunset/ 0.41 '
sunrise 0
3200K 0.3-49
— D: daylight 700
6500K 0.2
— overcast
day 7000K 0.114%°
— lightning 470
>20,000K 0.0 460 20

00 01 02 03 04 05 06 07 08

Review: Color Constancy

* automatic “white balance” from change in
illumination

e vast amount of processing behind the scenes!
e colorimetry vs. perception ~ Daylight

Do they match? :

From Color Appearance Models, fig 8-1

82

Review: RGB Color Space (Color Cube)

e define colors with (r, g, b) amounts of

red, green, and blue
— used by OpenGL
— hardware-centric

RGB color cube sits within CIE color

space

— subset of perceivable colors

— scale, rotate, shear cube

1,1,0

1,1,1
,)Whitc

Yellow D)
0,1,0
“4

Green

1,0,0

N

0,1,1
Cyan

Red
- /

Black

Blue

1,0,1
Magenta
0,0,1

83

Review: HSV Color Space

Energy Dominant Wavelength : Hue

hue: dominant wavelength, “color”
saturation: how far from grey

Intensity

Frequency
»

value: how far from black/white
— aka brightness, intensity: HSB / HSV / HSI similar

cannot convert to RGB with matrix alone

Ew

Energy

Red Violet

Pastel, Pale Color

Hue: |47 5‘ Red: |2os 5‘ New
Sat: |162 = Green: |218 E‘
Lum: |154 3‘ Blue: Igg E‘

Ew

Current

Colors [2] X]
Standard Customl Frequency
= -
“ Cancel l Violet
Preview '
<l
= N ﬂ
A
Energy Very Saturated

1. M/\j - L__[-Frequency
>

Red Violet

Review: HSI/HSV and RGB

 HSV/HSI conversion from RGB
— hue same in both
— value is max, intensity is average

: :
2[(1!3—(?)+(1’3—13)] if (B> G),

J(R-G)* +(R-B)G-B) | H=360-H

-1
H = cos

- min(R,G,B) 7 R+G+B
I 3

HSV: g _]-— min(R,G.B) v _ max(R,G.B)
V

oHSI: S=1

I
o
Yy

Review: YIQ Color Space
 color model used for color TV Q

— Y is luminance (same as CIE)

— | & Q are color (not same | as HSI!)

— using Y backwards compatible for B/W TVs
— conversion from RGB is linear

Y] [030 059 0.11 1[R]
I]1=1060 -028 -032(G
0, 021 -0.52 0.31 ||B
* green is much Iiéhter than red, and red I-ighter than blue

Review: Luminance vs. Intensity

* luminance
- Y Of YIQ (a) Colour Image
—0.299R+ 0.587G +0.114B

— captures important factor

* intensity/value/brightness
—1/V/B of HSI/HSV/HSB () Intensity Image
—0.333R+0.333G + 0.333B
— not perceptually based

(c) Luminance Image
www.csse.uwa.edu.au/~robyn/Visioncourse/colour/lecture/node5.html

o¢]
~

Visualization

88

Review: Marks and Channels

* marks

—geometric primitives

* channels

—control appearance

89

of marks

() Points

(® Position

2> Horizontal

—=ee4

® Shape

A Xk

(® Size
2> Length

® Lines

. R

2> Vertical

:

/ I

> Area

o [

2 Both

(® Areas

® Color

/77

> Tilt

|/~

2> Volume

-...

Review: Channel Rankings

(® Magnitude Channels: Ordered Attributes 3 Identity Channels: Categorical Attributes
Position on common scale e : ; Spatial region "] .
o
=
Position on unaligned scale ' ', ! i Color hue HEER
. I .) o o
Length (1D size) Motion o ® G
Tilt/angle | S Shape + O N A
Area (2D size) -« 0l é
£ e expressiveness principle
Depth (3D position) e ——e E . .
= — match channel and data characteristics
Color lumi . s Al
olorluminance U EE | . effectiveness principle
Color saturation [] m — encode most important attributes with
highest ranked channels
Curvature |)) D
()
I
Volume (3D size) LT T 1 5

90

