

University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2016

Tamara Munzner

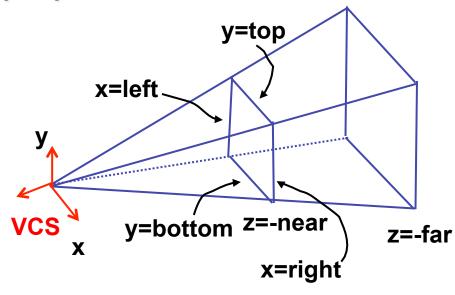
Final Review 2

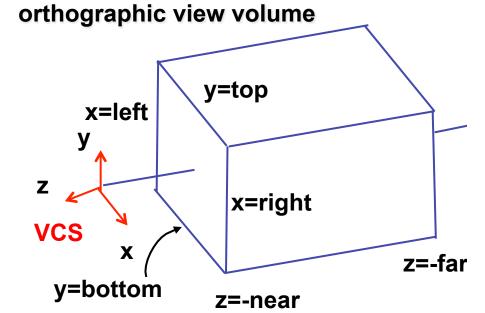
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2016

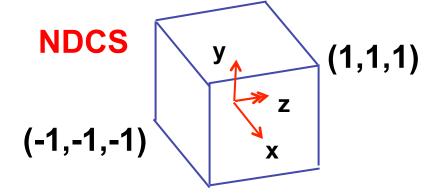
Viewing, Continued

Review: From VCS to NDCS

perspective view volume



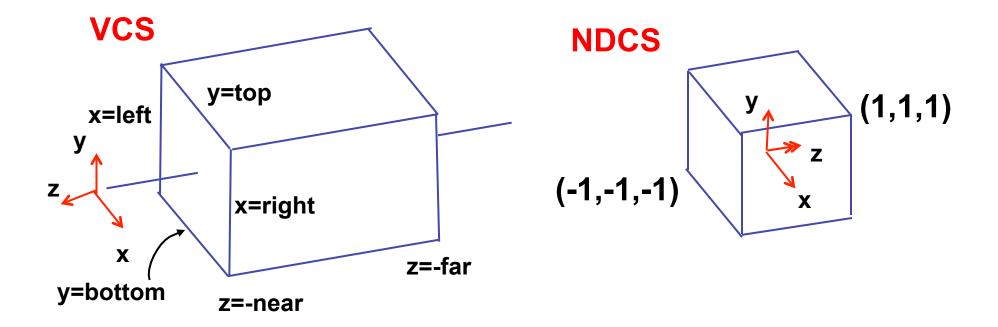




- orthographic camera
 - center of projection at infinity
- no perspective convergence

Review: Orthographic Derivation

scale, translate, reflect for new coord sys



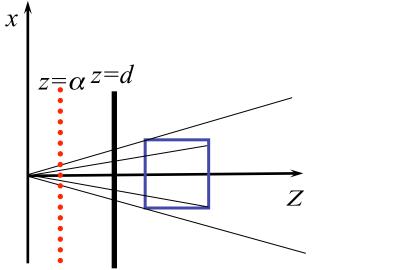
Review: Orthographic Derivation

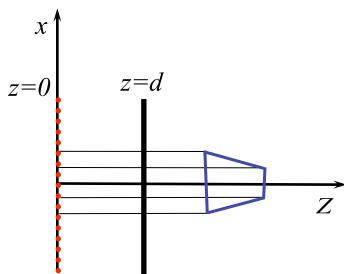
scale, translate, reflect for new coord sys

$$P' = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bot} & 0 & -\frac{top + bot}{top - bot} \\ 0 & 0 & \frac{-2}{far - near} & -\frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

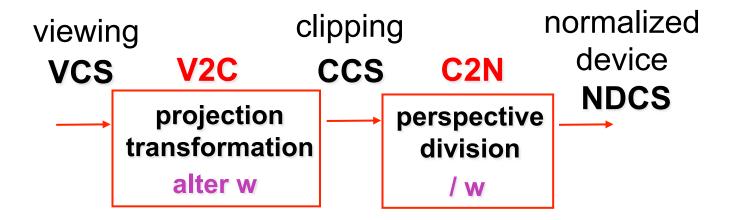
Review: Projection Normalization

- warp perspective view volume to orthogonal view volume
 - render all scenes with orthographic projection!
 - aka perspective warp





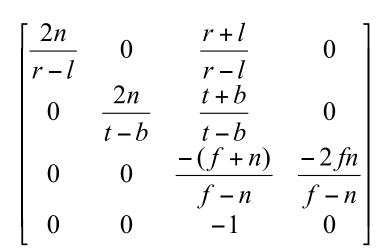
Review: Separate Warp From Homogenization

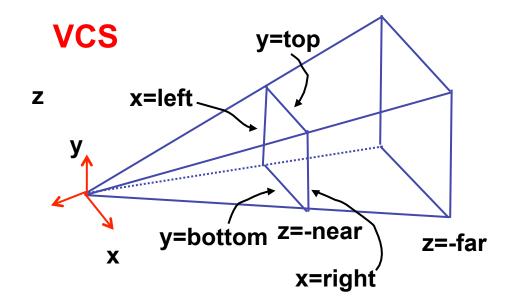


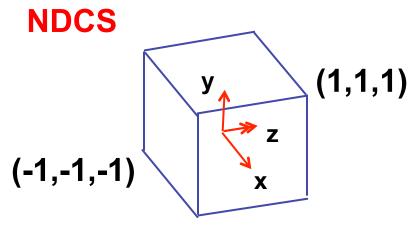
- warp requires only standard matrix multiply
 - distort such that orthographic projection of distorted objects is desired persp projection
 - w is changed
 - clip after warp, before divide
 - division by w: homogenization

Review: Perspective Derivation

- shear
 - change x/y if asymmetric r/l, t/b
- scale
- projection-normalization
 - pre-warp according to z



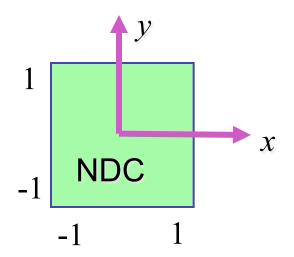




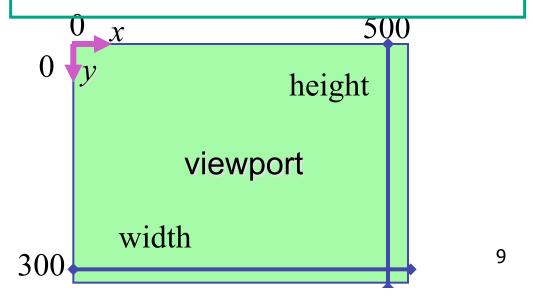
Review: N2D Transformation

$$\begin{bmatrix} x_D \\ y_D \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \frac{width}{2} - \frac{1}{2} \\ 0 & 1 & 0 & \frac{height}{2} - \frac{1}{2} \\ 0 & 0 & 1 & \frac{depth}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{width}{2} & 0 & 0 & 0 \\ 0 & \frac{height}{2} & 0 & 0 \\ 0 & 0 & \frac{depth}{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_N \\ y_N \\ z_N \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{width(x_N+1)-1}{2} \\ \frac{height(-y_N+1)-1}{2} \\ \frac{depth(z_N+1)}{2} \\ 1 \end{bmatrix}$$

reminder: NDC z range is -1 to 1

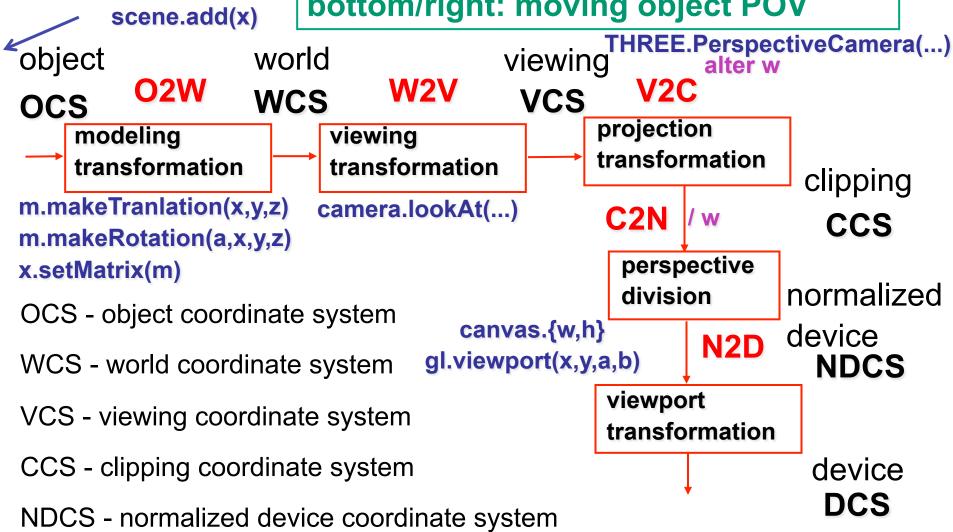


Display z range is 0 to 1. glDepthRange(n,f) can constrain further, but *depth* = 1 is both max and default



Review: Projective Rendering Pipeline

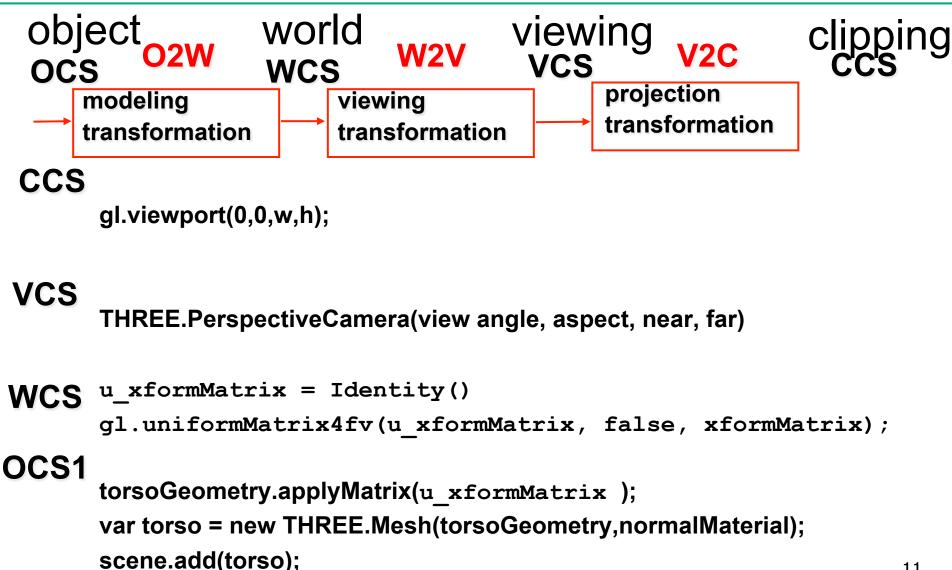
following pipeline from top/left to bottom/right: moving object POV



DCS - device coordinate system

Review: WebGL Example

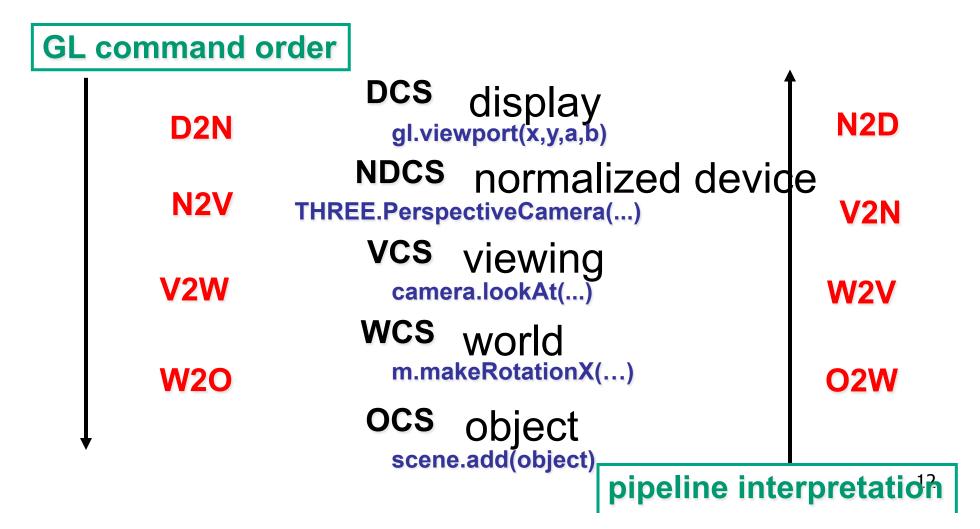
go back from end of pipeline to beginning: coord frame POV!



Review: Coord Sys: Frame vs Point

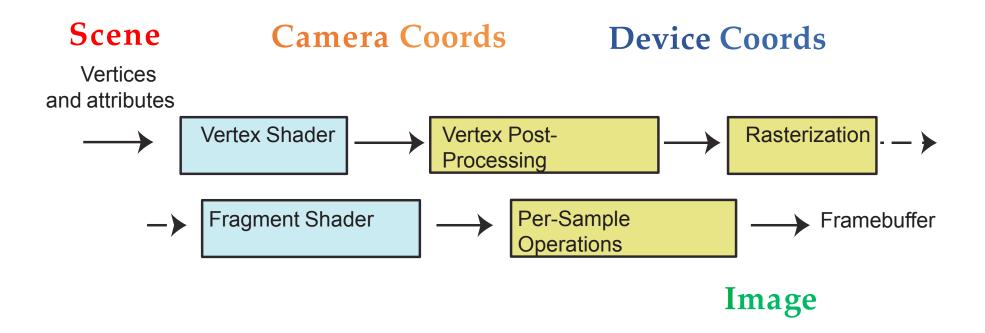
read down: transforming between coordinate frames, from frame A to frame B

read up: transforming points, up from frame B coords to frame A coords

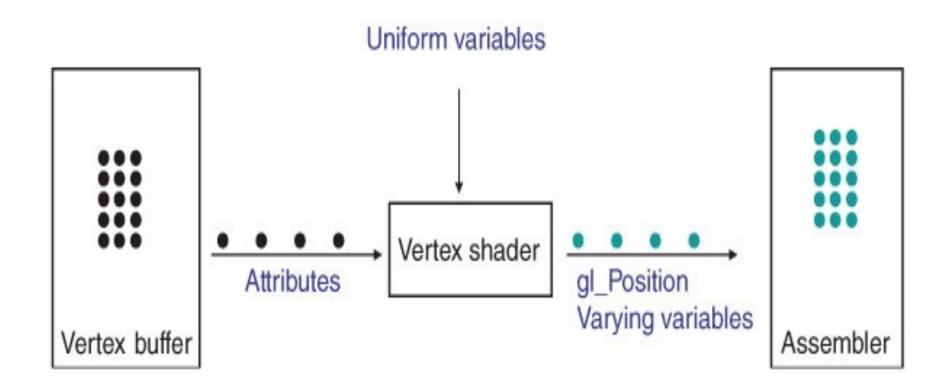


Post-Midterm Material

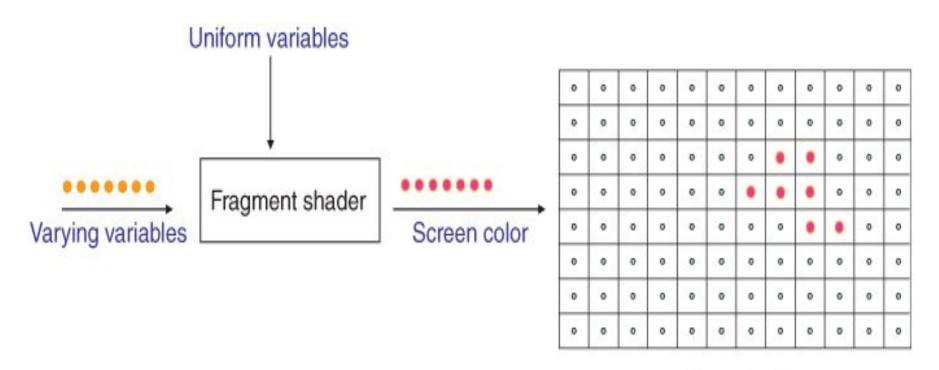
OPENGL RENDERING PIPELINE



VERTEX SHADER

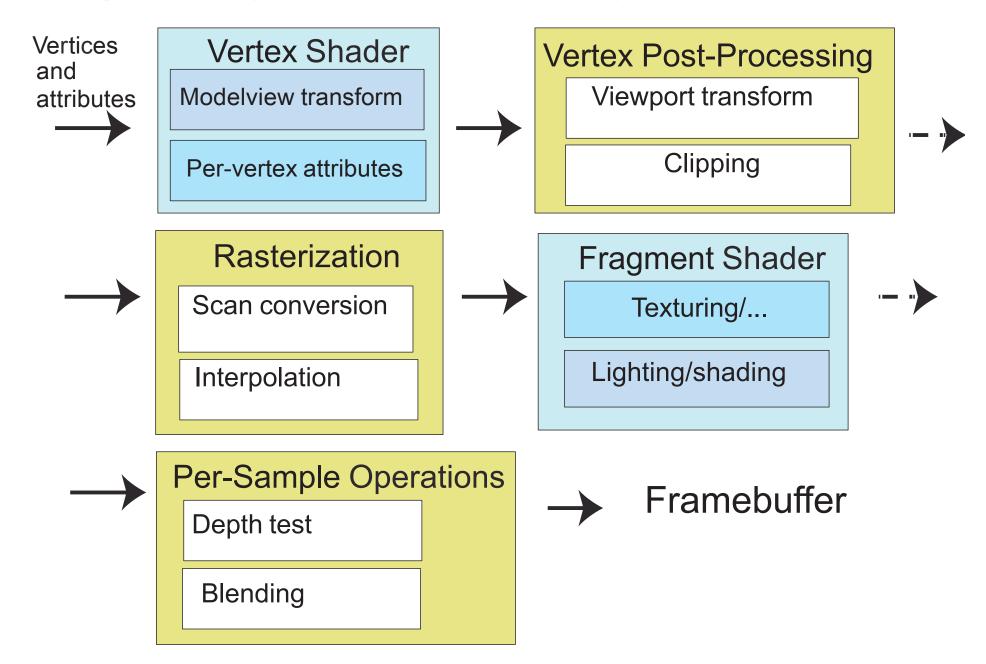


FRAGMENT SHADER



Frame buffer

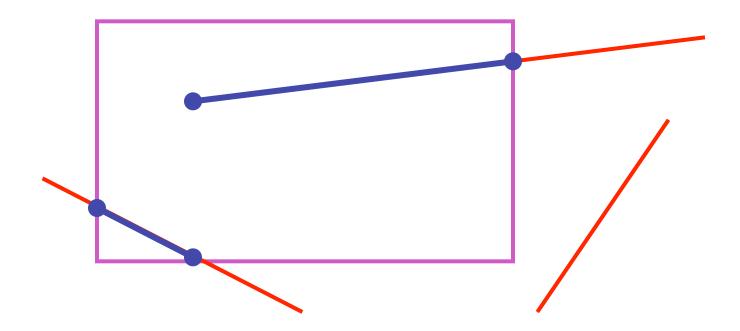
OPENGL RENDERING PIPELINE



Clipping/Rasterization/Interpolation

Review: Clipping

 analytically calculating the portions of primitives within the viewport



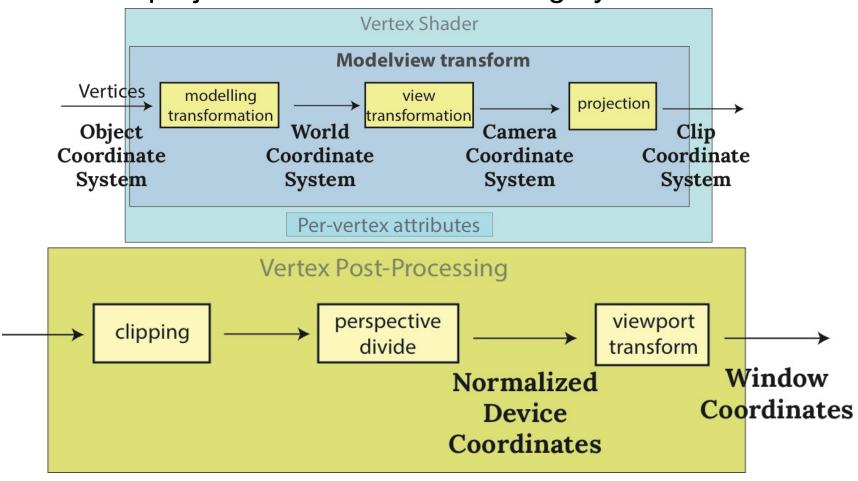
Review: Clipping

$$-w_c < x_c < w_c$$

$$-w_c < y_c < w_c$$

- Perform clipping in clip-coordinates!
 - After projection and before dividing by w

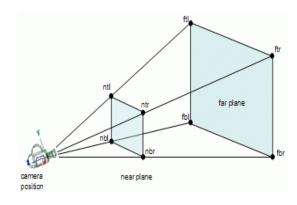
 $-w_c < z_c < w_c$



Review: Clipping coordinates

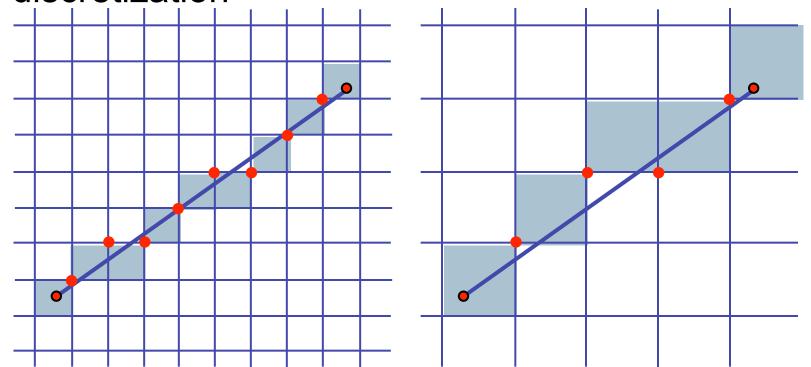
- Eye coordinates (projected) → clip coordinates → normalized device coordinates (NDCs)
- Dividing clip coordinates (x_c, y_c, z_c, w_c) by the $w_c(w_c = w_n)$ component (the fourth component in the homogeneous coordinates) yields normalized device coordinates (NDCs).

$$\begin{bmatrix} x_{n}w_{n} \\ y_{n}w_{n} \\ z_{n}w_{n} \\ w_{n} \end{bmatrix} = \begin{bmatrix} x_{c} \\ y_{c} \\ z_{c} \\ w_{c} \end{bmatrix} = \begin{bmatrix} s_{x} & 0 & -c_{x} & 0 \\ 0 & s_{y} & -c_{y} & 0 \\ 0 & 0 & \frac{f+n}{f-n} & -\frac{2fn}{f-n} \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_{e} \\ y_{e} \\ z_{e} \\ 1 \end{bmatrix}$$



Review: Scan Conversion

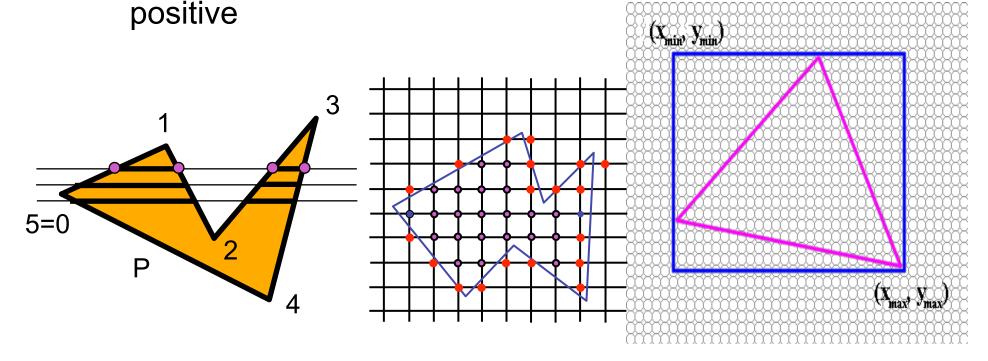
- convert continuous rendering primitives into discrete fragments/pixels
 - given vertices in DCS, fill in the pixels
- display coordinates required to provide scale for discretization



Review: Scanline Idea

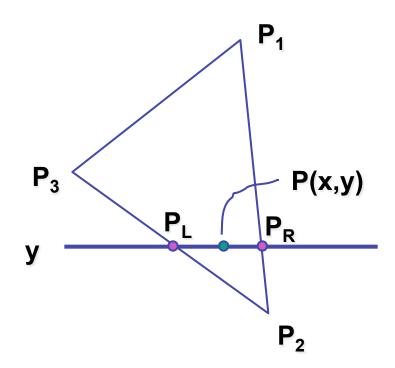
- scanline: a line of pixels in an image
- basic structure of code:
 - Setup: compute edge equations, bounding box
 - (Outer loop) For each scanline in bounding box...

 (Inner loop) ...check each pixel on scanline, evaluating edge equations and drawing the pixel if all three are

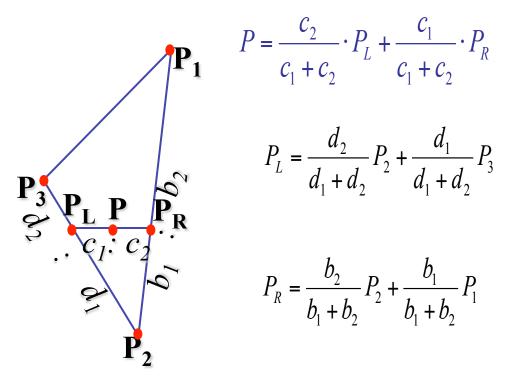


Review: Bilinear Interpolation

- interpolate quantity along L and R edges, as a function of y
 - then interpolate quantity as a function of x



Review: Bilinear interpolation



$$P = \frac{c_2}{c_1 + c_2} \cdot P_L + \frac{c_1}{c_1 + c_2} \cdot P_R$$

$$P_L = \frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3$$

$$P_R = \frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1$$

$$P = \frac{c_2}{c_1 + c_2} \left(\frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3 \right) + \frac{c_1}{c_1 + c_2} \left(\frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \right)$$

Review: Barycentric Coordinates

weighted (affine) combination of vertices

$$P = \alpha \cdot P_1 + \beta \cdot P_2 + \gamma \cdot P_3$$

$$\alpha + \beta + \gamma = 1$$

$$0 \le \alpha, \beta, \gamma \le 1$$

$$Q = 0.5$$

$$Q = 0.5$$

Review: Computing Barycentric Coordinates

- 2D triangle area
 - half of parallelogram area
 - from cross product

$$A = A_{P1} + A_{P2} + A_{P3}$$

$$\alpha = A_{P1}/A$$

$$\beta = A_{P2}/A$$

$$\gamma = A_{P3}/A$$

ogram area
$$A_{P3} = \begin{pmatrix} \alpha, \beta, \gamma \\ \alpha, \beta, \gamma \\ \alpha, \beta, \gamma \\ P_3 \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ A_{P_2} \\ A_{P_3} \end{pmatrix}$$

$$A = \frac{1}{2} \left\| \overrightarrow{P_1} \overrightarrow{P_2} \times \overrightarrow{P_1} \overrightarrow{P_3} \right\|$$

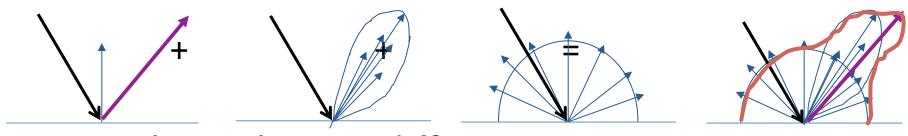
$$P_2 (\alpha, \beta, \gamma) = \begin{pmatrix} \alpha, \beta, \gamma \\ \alpha, \beta, \gamma \\ \alpha, \beta, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \alpha, \beta, \gamma \\ \alpha, \beta, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \alpha, \beta, \gamma \\ \alpha, \beta, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \beta, \gamma \\ \alpha, \beta, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta, \gamma \\ \gamma, \gamma \end{pmatrix} = \begin{pmatrix} \alpha, \beta,$$

weighted combination of three points

Lighting/Shading

Review: Reflectance

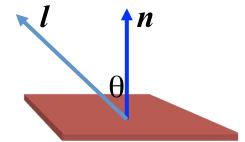
- specular: perfect mirror with no scattering
- gloss: mixed, partial specularity
- diffuse: all directions with equal energy



specular + glossy + diffuse =
reflectance distribution

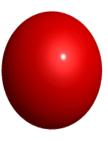
Review: Reflection Equations

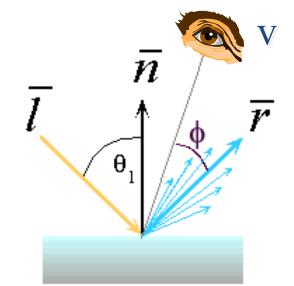
$$I_{diffuse} = k_d I_{light} (n \cdot l)$$



$$\mathbf{I}_{\text{specular}} = \mathbf{k}_{\text{s}} \mathbf{I}_{\text{light}} (\mathbf{v} \cdot \mathbf{r})^{n_{\text{shiny}}}$$

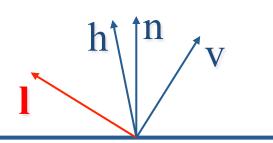
$$R = 2 (N(N \cdot L)) - L$$





$$\mathbf{I}_{\text{specular}} = \mathbf{k}_{\text{s}} \mathbf{I}_{\text{light}} (\mathbf{h} \cdot \mathbf{n})^{n_{\text{shiny}}}$$

$$\mathbf{h} = (\mathbf{l} + \mathbf{v})/2$$



Review: Reflection Equations

full Phong lighting model

combine ambient, diffuse, specular components

$$\mathbf{I}_{\text{total}} = \mathbf{k}_{\mathbf{a}} \mathbf{I}_{\text{ambient}} + \sum_{i=1}^{\# lights} \mathbf{I}_{\mathbf{i}} (\mathbf{k}_{\mathbf{d}} (\mathbf{n} \cdot \mathbf{l}_{\mathbf{i}}) + \mathbf{k}_{\mathbf{s}} (\mathbf{v} \cdot \mathbf{r}_{\mathbf{i}})^{n_{shiny}})$$

Blinn-Phong lighting

$$\mathbf{I}_{\text{total}} = \mathbf{k}_{\mathbf{a}} \mathbf{I}_{\text{ambient}} + \sum_{i=1}^{\# lights} \mathbf{I}_{\mathbf{i}} (\mathbf{k}_{\mathbf{d}} (\mathbf{n} \cdot \mathbf{l}_{\mathbf{i}}) + \mathbf{k}_{\mathbf{s}} (\mathbf{h} \cdot \mathbf{n}_{\mathbf{i}})^{n_{shiny}})$$

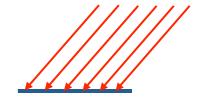
don't forget to normalize all lighting vectors!! n,l,r,v,h

Review: Lighting

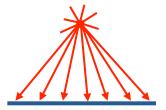
- lighting models
 - ambient
 - normals don't matter
 - Lambert/diffuse
 - angle between surface normal and light
- Phong/specular
 - surface normal, light, and viewpoint
- light and material interaction
 - component-wise multiply
 - $(I_r,I_g,I_b) \times (m_r,m_g,m_b) = (I_r*m_r,I_g*m_g,I_b*m_b)$

Review: Light Sources

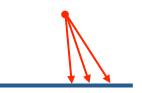
- directional/parallel lights
 - point at infinity: $(x,y,z,0)^T$

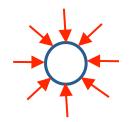


- point lights
 - finite position: $(x,y,z,1)^T$



- spotlights
 - position, direction, angle
- ambient lights





Review: Light Source Placement

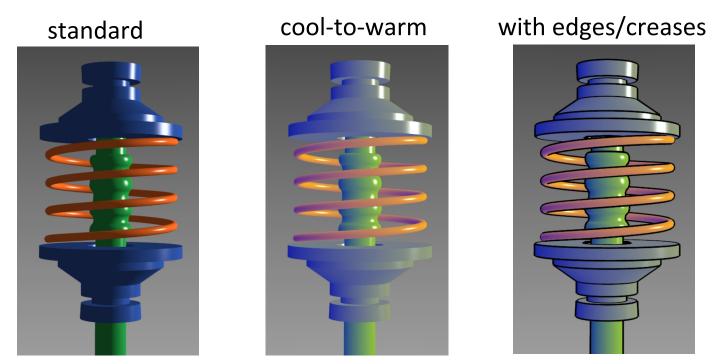
- geometry: positions and directions
 - standard: world coordinate system
 - effect: lights fixed wrt world geometry
 - alternative: camera coordinate system
 - effect: lights attached to camera (car headlights)

Review: Shading Models

- flat shading
 - for each polygon
 - compute Phong lighting just once
- Gouraud shading
 - compute Phong lighting at the vertices
 - for each pixel in polygon, interpolate colors
- Phong shading
 - for each pixel in polygon
 - interpolate normal
 - compute Phong lighting

Review: Non-Photorealistic Shading

- cool-to-warm shading: $k_w = \frac{1 + \mathbf{n} \cdot \mathbf{l}}{2}$, $c = k_w c_w + (1 k_w) c_c$ draw silhouettes: if $(\mathbf{e} \cdot \mathbf{n_0})(\mathbf{e} \cdot \mathbf{n_1}) \le 0$, $\mathbf{e} = \mathbf{edge}$ -eye vector
- draw creases: if $(\mathbf{n_0} \cdot \mathbf{n_1}) \leq threshold$

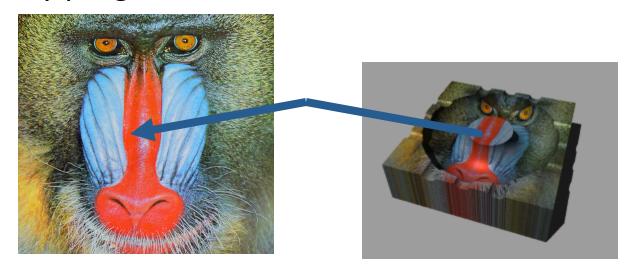


http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

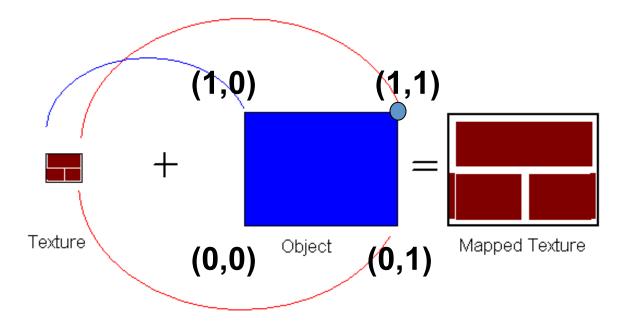
Texturing

Review: Texture Coordinates

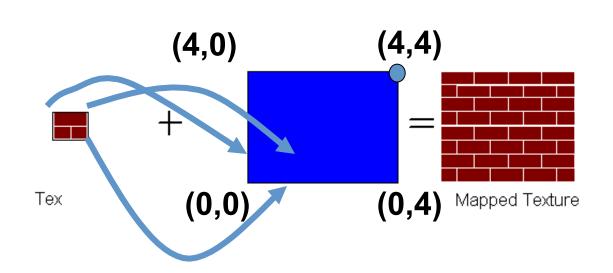
- texture image: 2D array of color values (texels)
- assigning texture coordinates (u,v) at vertex with object coordinates (x,y,z,w)
 - sometimes called (s,t) instead of (u,v)
 - use interpolated (u,v) for texel lookup at each pixel
 - use value to modify a polygon color or other property
 - specified by programmer or artist



Review: Tiled Texture Map

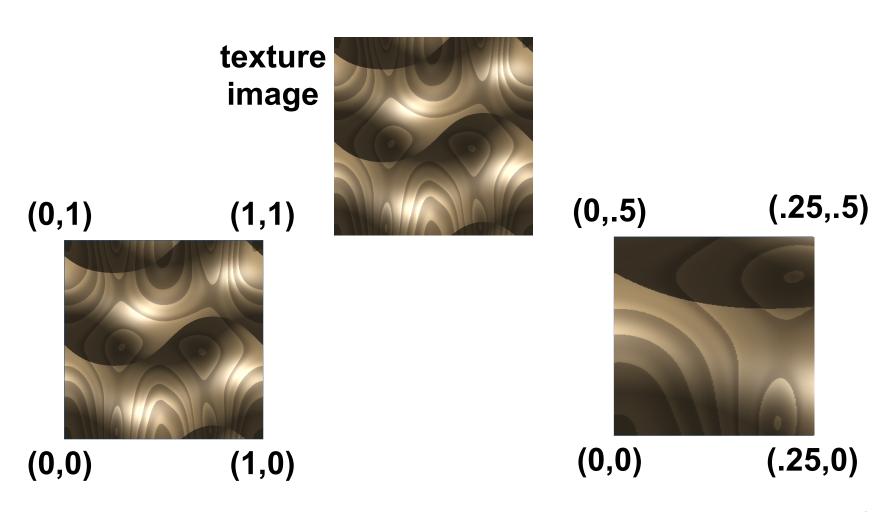


clamp vs repeat



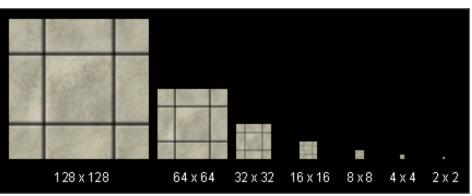


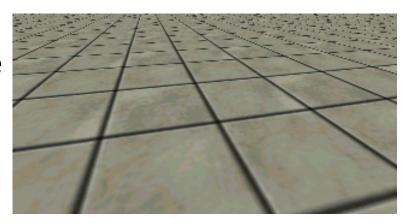
Review: Fractional Texture Coordinates



Review: MIPmapping

- image pyramid, precompute averaged versions
 - avoid aliasing artifacts
 - only requires 1/3 more storage



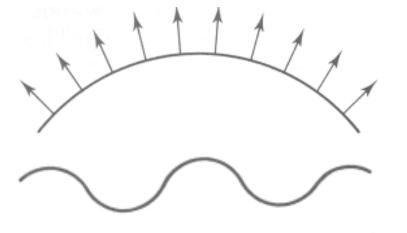


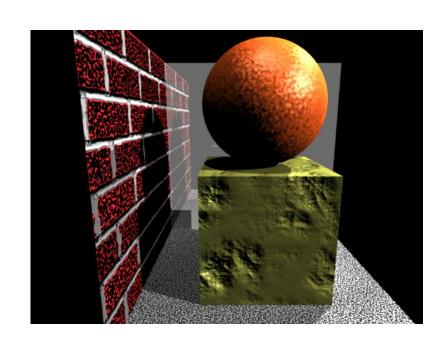
Without MIP-mapping

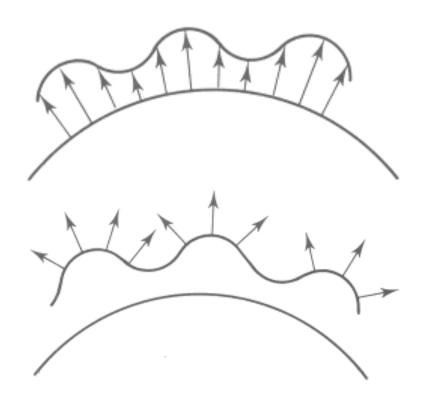
With MIP-mapping

Review: Bump Mapping: Normals As Texture

- create illusion of complex geometry model
- control shape effect by locally perturbing surface normal





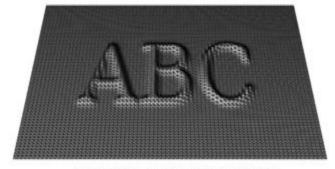


Review: Displacement Mapping

- bump mapping gets silhouettes wrong
 - shadows wrong too
- change surface geometry instead
 - only recently available with realtime graphics
 - need to subdivide surface

ORIGINAL MESH

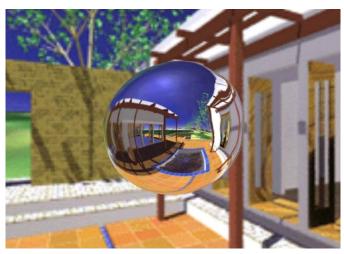
DISPLACEMENT MAP



MESH WITH DISPLACEMENT

Review: Environment Mapping

- cheap way to achieve reflective effect
 - generate image of surrounding
 - map to object as texture
- sphere mapping: texture is distorted fisheye view
 - point camera at mirrored sphere
 - use spherical texture coordinates

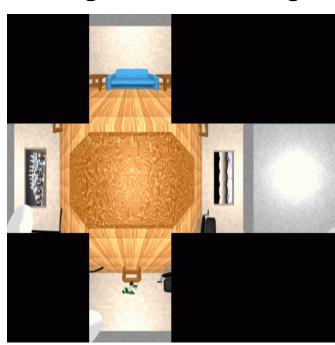


Review: Environment Cube Mapping

• 6 planar textures, sides of cube

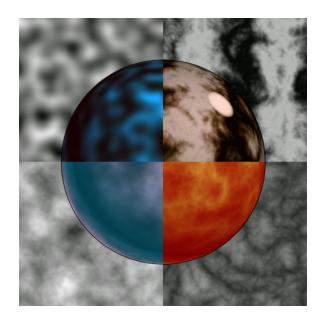
• point camera in 6 different directions,

facing out from origin



Review: Perlin Noise as Procedural Texture

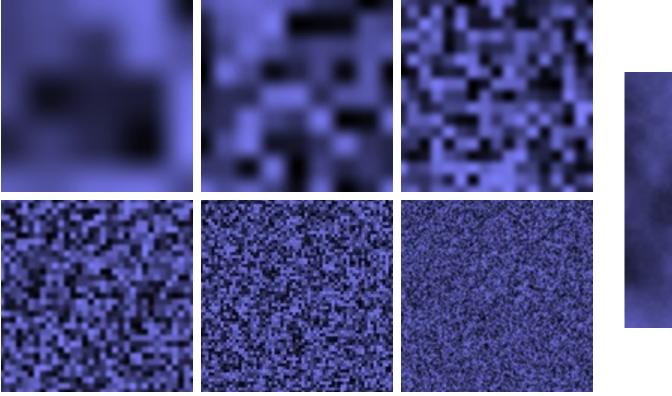
- several good explanations
 - http://www.noisemachine.com/talk1
 - http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
 - http://www.robo-murito.net/code/perlin-noise-math-faq.html

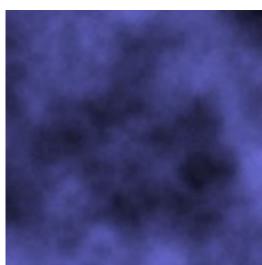


http://mrl.nyu.edu/~perlin/planet/

Review: Perlin Noise

- coherency: smooth not abrupt changes
- turbulence: multiple feature sizes



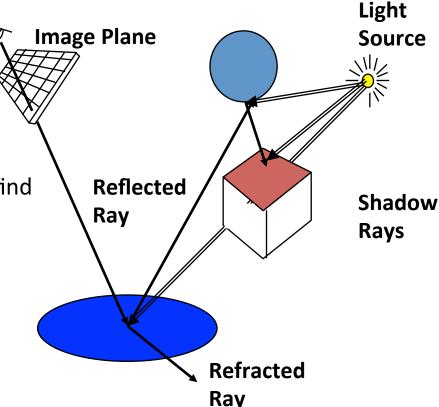


Ray Tracing

Review: Recursive Ray Tracing

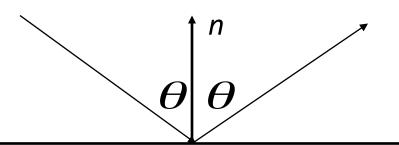
Eye

- ray tracing can handle
 - reflection (chrome/mirror)
 - refraction (glass)
 - shadows
- one primary ray per pixel
- spawn secondary rays
 - reflection, refraction
 - if another object is hit, recurse to find its color
 - shadow
 - cast ray from intersection point to light source, check if intersects another object
 - termination criteria
 - no intersection (ray exits scene)
 - max bounces (recursion depth)
 - attenuated below threshold



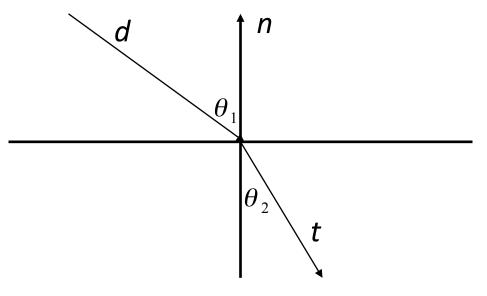
Review: Reflection and Refraction

- reflection: mirror effects
 - perfect specular reflection



- refraction: at boundary
- Snell's Law
 - light ray bends based on refractive indices c₁, c₂

$$c_1 \sin \theta_1 = c_2 \sin \theta_2$$



Review: Ray Tracing

• issues:

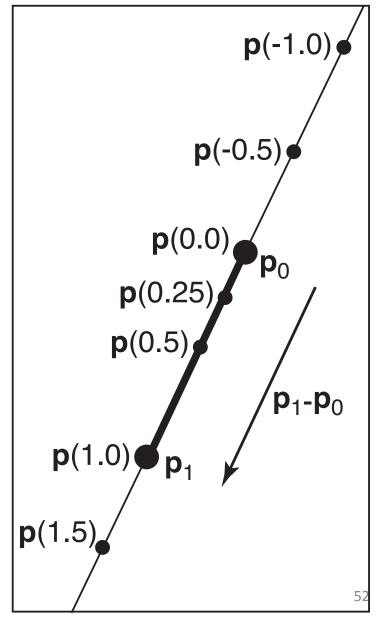
- generation of rays
- intersection of rays with geometric primitives
- geometric transformations
- lighting and shading
- efficient data structures so we don't have to test intersection with every object

Backstory: 2D Parametric Lines

$$\cdot \mathbf{p}(t) = \mathbf{p}_0 + t(\mathbf{p}_1 - \mathbf{p}_0)$$

$$\mathbf{p}(t) = \mathbf{o} + t(\mathbf{d})$$

start at point p_{0,} go towards p₁, according to parameter t
 - p(0) = p₀, p(1) = p₁



Review: Ray-Sphere Intersections, Lighting

- Intersections: solving a set of equations
 - Using implicit formulas for primitives
- Direct illumination: gradient of implicit surface

Example: Ray-Sphere intersection

ray:
$$x(t) = p_x + v_x t$$
, $y(t) = p_y + v_y t$, $z(t) = p_z + v_z t$
(unit) sphere: $x^2 + y^2 + z^2 = 1$
quadratic equation in t :
$$0 = (p_x + v_x t)^2 + (p_y + v_y t)^2 + (p_z + v_z t)^2 - 1$$

$$= t^2 (v_x^2 + v_y^2 + v_z^2) + 2t(p_x v_x + p_y v_y + p_z v_z)$$

$$+ (p_x^2 + p_y^2 + p_z^2) - 1$$

Example: Sphere normals

$$\mathbf{n}(x, y, z) = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}$$

Procedural/Collision

Review: Procedural Modeling

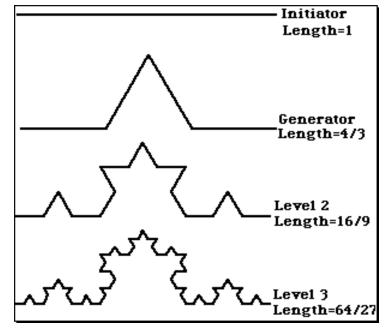
- textures, geometry
 - nonprocedural: explicitly stored in memory
- procedural approach
 - compute something on the fly
 - not load from disk
 - often less memory cost
 - visual richness
 - adaptable precision
- noise, fractals, particle systems

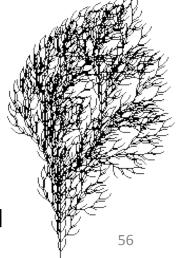
Review: Language-Based Generation

- L-Systems
 - F: forward, R: right, L: left
 - Koch snowflake:
 - F = FLFRRFLF
 - Mariano's Bush:

$$F=FF-[-F+F+F]+[+F-F-F]$$

• angle 16

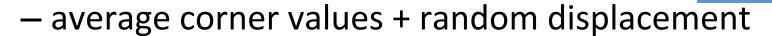




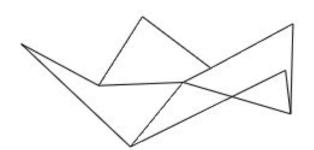
http://spanky.triumf.ca/www/fractint/lsys/plants.html

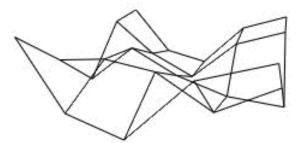
Review: Fractal Terrain

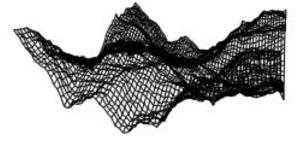
- 1D: midpoint displacement
 - divide in half, randomly displace
 - scale variance by half
- 2D: diamond-square
 - generate new value at midpoint



scale variance by half each time

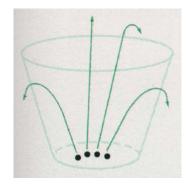


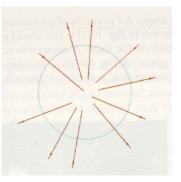




Review: Particle Systems

- changeable/fluid stuff
 - fire, steam, smoke, water, grass, hair, dust, waterfalls, fireworks, explosions, flocks
- life cycle
 - generation, dynamics, death
- rendering tricks
 - avoid hidden surface computations



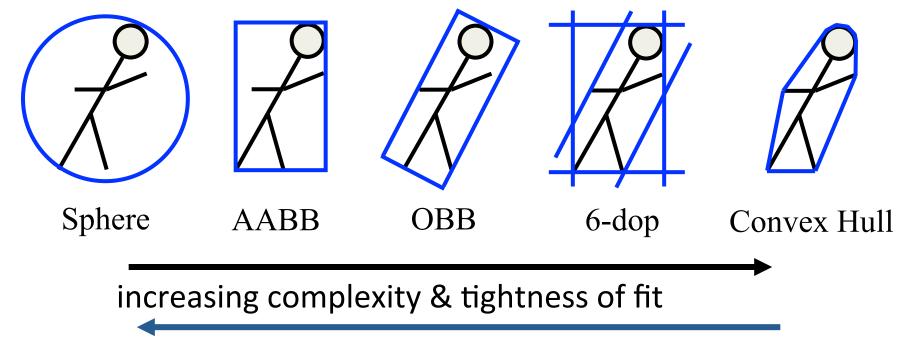


Review: Collision Detection

- boundary check
 - perimeter of world vs. viewpoint or objects
 - 2D/3D absolute coordinates for bounds
 - simple point in space for viewpoint/objects
- set of fixed barriers
 - walls in maze game
 - 2D/3D absolute coordinate system
- set of moveable objects
 - one object against set of items
 - missile vs. several tanks
 - multiple objects against each other
 - punching game: arms and legs of players
 - room of bouncing balls

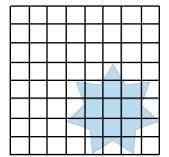
Review: Collision Proxy Tradeoffs

- collision proxy (bounding volume) is piece of geometry used to represent complex object for purposes of finding collision
- proxies exploit facts about human perception
 - we are bad at determining collision correctness
 - especially many things happening quickly

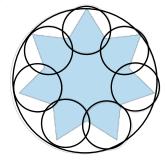


Review: Spatial Data Structures

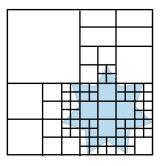
uniform grids



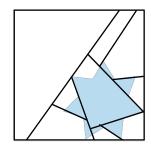
bounding volume hierarchies



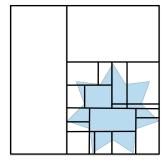
octrees



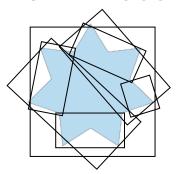
BSP trees



kd-trees



OBB trees



Hidden Surfaces / Picking / Blending

Review: Z-Buffer Algorithm

- augment color framebuffer with Z-buffer or depth buffer which stores Z value at each pixel
 - at frame beginning, initialize all pixel depths to ∞
 - when rasterizing, interpolate depth (Z) across polygon
 - check Z-buffer before storing pixel color in framebuffer and storing depth in Z-buffer
 - don't write pixel if its Z value is more distant than the Z value already stored there

Review: Depth Test Precision

reminder: perspective transformation maps eye-space

(VCS) z to NDC z

(VCS) z to NDC z
$$\begin{bmatrix}
E & 0 & A & 0 \\
0 & F & B & 0 \\
0 & 0 & C & D \\
0 & 0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix} = \begin{bmatrix}
Ex + Az \\
Fy + Bz \\
Cz + D \\
-z
\end{bmatrix} = \begin{bmatrix}
-\left(\frac{Ex}{z} + A\right) \\
-\left(\frac{Fy}{z} + B\right) \\
-\left(\frac{Fy}{z} + B\right) \\
-\left(C + \frac{D}{z}\right)
\end{bmatrix}$$

$$z_{NDC} = -\left(C + \frac{D}{z_{VCS}}\right) \quad C = \frac{-(f+n)}{f-n} \quad D = \frac{-2fn}{f-n}$$

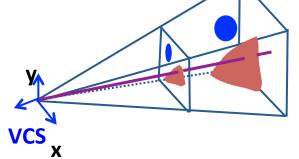
- thus: depth buffer essentially stores 1/z (for VCS z)
 - high precision for near, low precision for distant

Review: Integer Depth Buffer

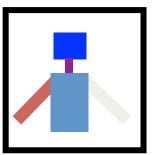
- reminder from viewing discussion: depth ranges
 - VCS range [zNear, zFar], NDCS range [-1,1], DCS z range [0,1]
- convert fractional real number to integer format
 - multiply by 2ⁿ then round to nearest int
 - where n = number of bits in depth buffer
- 24 bit depth buffer = 2^24 = 16,777,216 possible values
 - small numbers near, large numbers far
- consider VCS depth: $z_{DCS} = (1 << N)*(a + b / z_{VCS})$
 - N = number of bits of Z precision, 1<<N bitshift = 2ⁿ
 - a = zFar / (zFar zNear)
 - b = zFar * zNear / (zNear zFar)
 - $-z_{VCS}$ = distance from the eye to the object

Review: Picking Methods

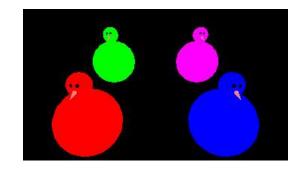
raycaster intersection support

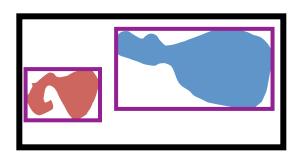


offscreen buffer color coding



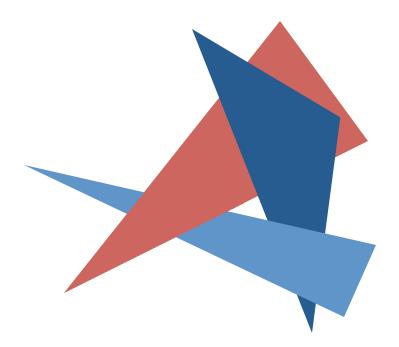
bounding extents



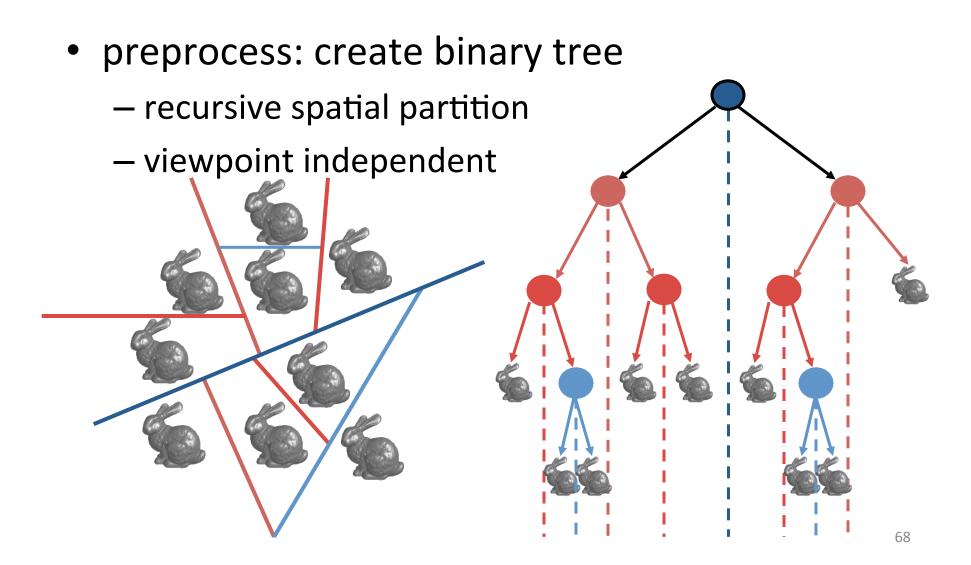


Review: Painter's Algorithm

- draw objects from back to front
- problems: no valid visibility order for
 - intersecting polygons
 - cycles of non-intersecting polygons possible



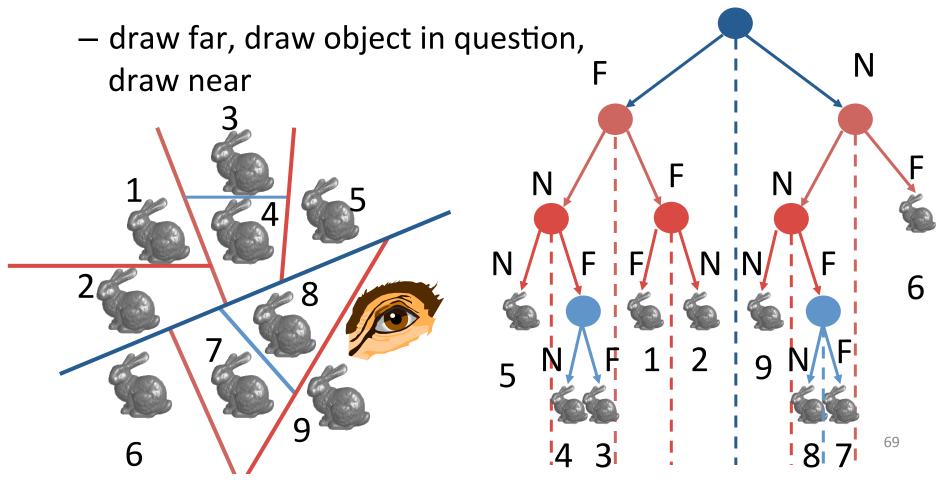
Review: BSP Trees



Review: BSP Trees

 runtime: correctly traversing this tree enumerates objects from back to front

viewpoint dependent: check which side of plane viewpoint is on at each node



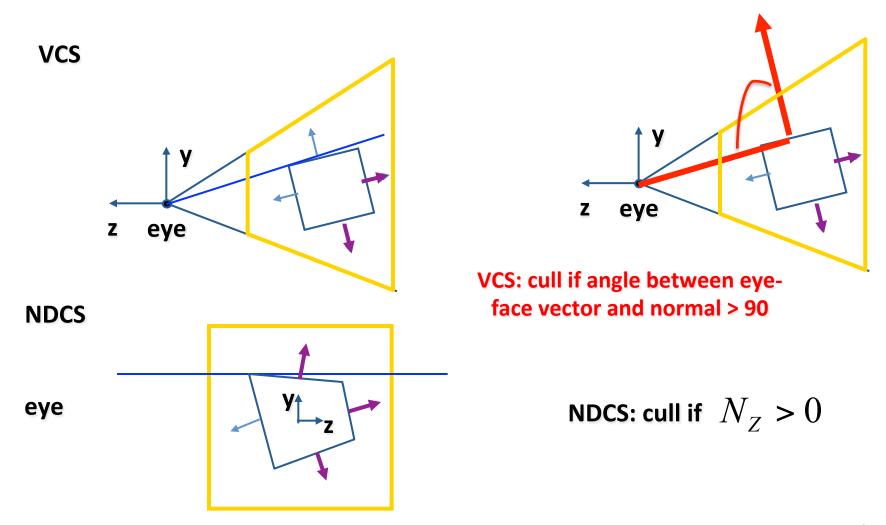
Review: Object Space Algorithms

- determine visibility on object or polygon level
 - using camera coordinates
- resolution independent
 - explicitly compute visible portions of polygons
- early in pipeline
 - after clipping
- requires depth-sorting
 - painter's algorithm
 - BSP trees

Review: Image Space Algorithms

- perform visibility test for in screen coordinates
 - limited to resolution of display
 - Z-buffer: check every pixel independently
- performed late in rendering pipeline

Review: Back-face Culling



Review: Invisible Primitives

- why might a polygon be invisible?
 - polygon outside the field of view / frustum
 - solved by clipping
 - polygon is backfacing
 - solved by backface culling
 - polygon is occluded by object(s) nearer the viewpoint
 - solved by hidden surface removal

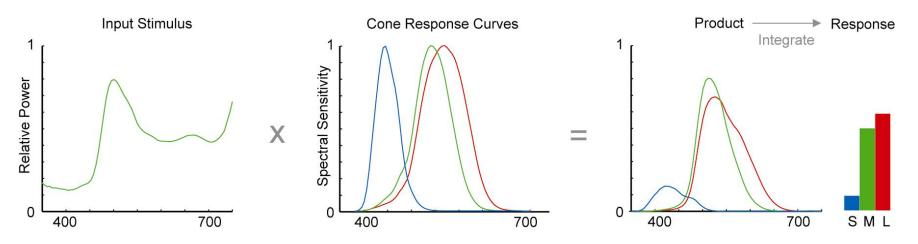
Review: Blending with Premultiplied Alpha

- specify opacity with alpha channel α
 - α =1: opaque, α =.5: translucent, α =0: transparent
- how to express a pixel is half covered by a red object?
 - obvious way: store color independent from transparency (r,g,b,α)
 - intuition: alpha as transparent colored glass
 - 100% transparency can be represented with many different RGB values
 - pixel value is (1,0,0,.5)
 - upside: easy to change opacity of image, very intuitive
 - downside: compositing calculations are more difficult not associative
 - elegant way: premultiply by α so store (α r, α g, α b, α)
 - intuition: alpha as screen/mesh
 - RGB specifies how much color object contributes to scene
 - alpha specifies how much object obscures whatever is behind it (coverage)
 - alpha of .5 means half the pixel is covered by the color, half completely transparent
 - only one 4-tuple represents 100% transparency: (0,0,0,0)
 - pixel value is (.5, 0, 0, .5)
 - upside: compositing calculations easy (& additive blending for glowing!)
 - downside: less intuitive

Color

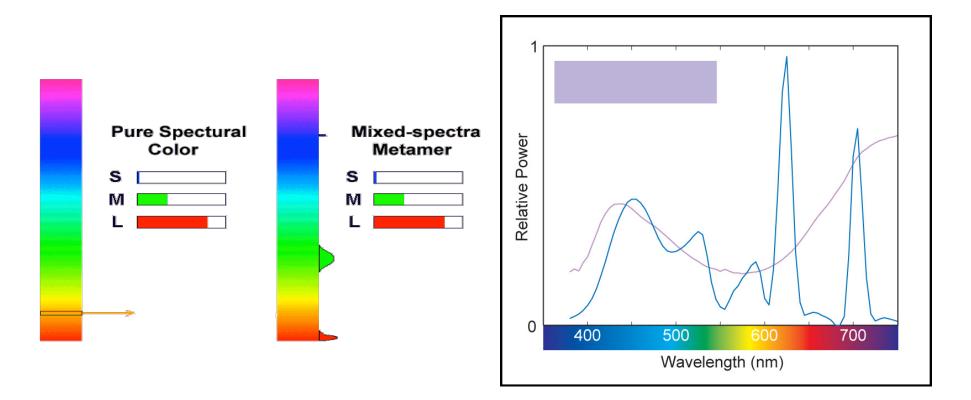
Backstory & Review: Trichromacy

- trichromacy
 - three types of cones: S, M, L
 - color is combination of cone stimuli
 - different cone responses: area function of wavelength
- for a given spectrum
 - multiply by responses curve
 - integrate to get response



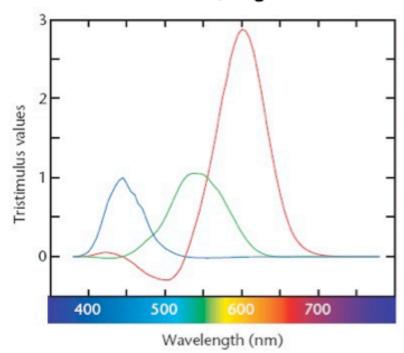
Review: Metamers

- brain sees only cone response
 - different spectra appear the same: metamers

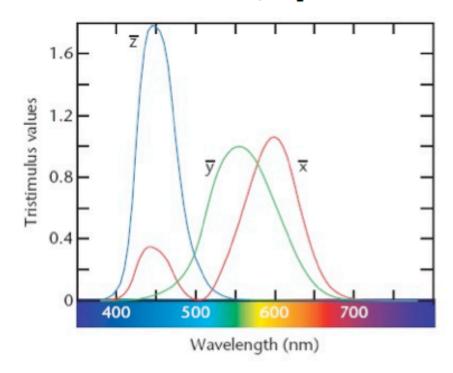


Review: Measured vs. CIE XYZ Color Spaces

Stiles-Burch, negative lobe



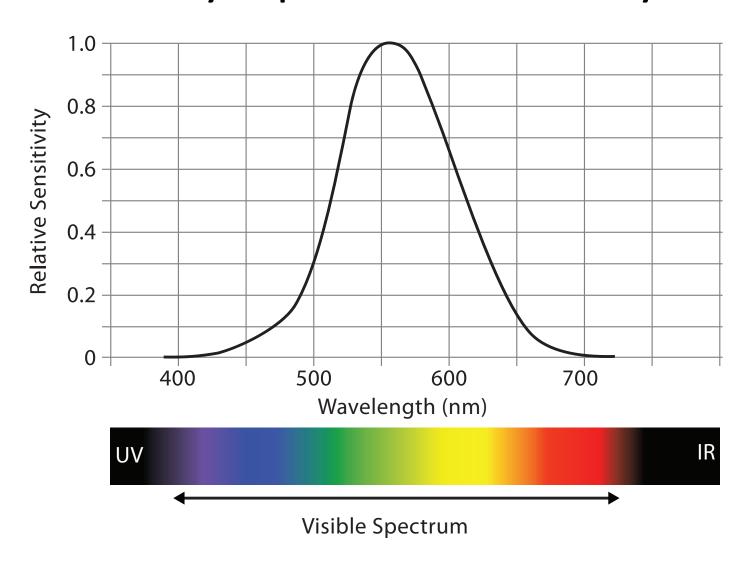
CIE standard, all positive



- measured basis
 - monochromatic lights
 - physical observations
 - negative lobes

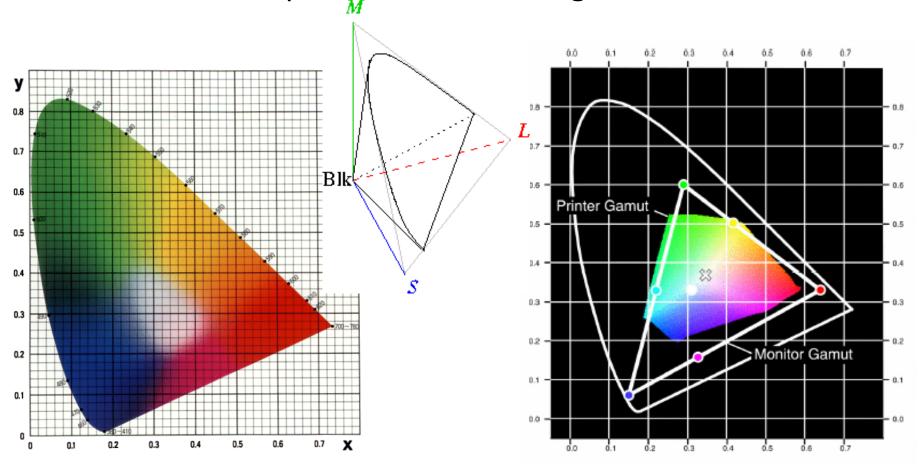
- transformed basis
 - "imaginary" lights
 - all positive, unit area
 - Y is luminance

Backstory: Spectral Sensitivity Curve



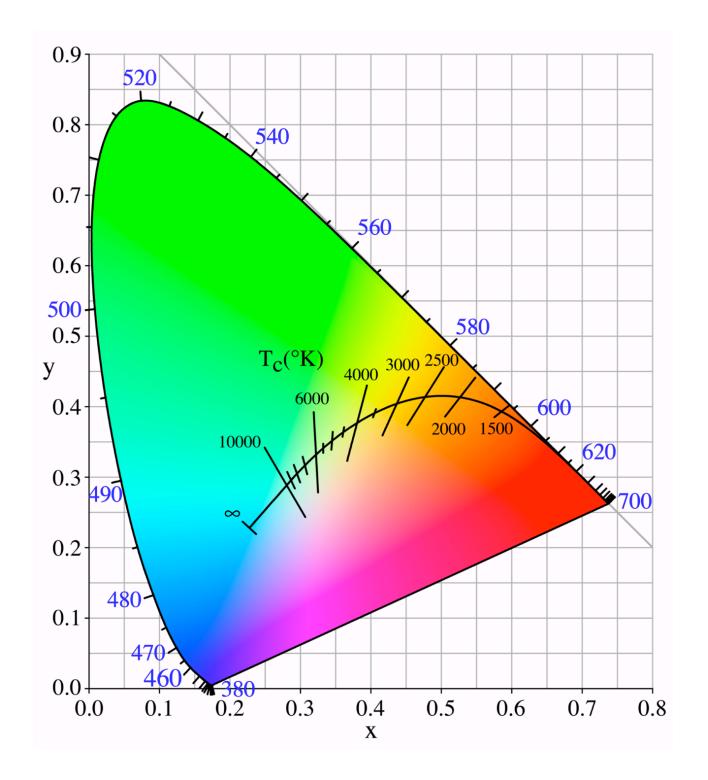
Review: CIE Chromaticity Diagram and Gamuts

- plane of equal brightness showing chromaticity
- gamut is polygon, device primaries at corners
 - defines reproducible color range



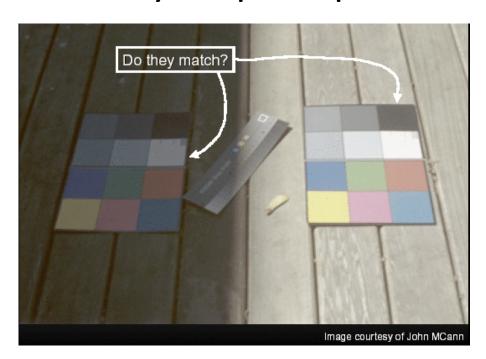
Review: Blackbody Curve

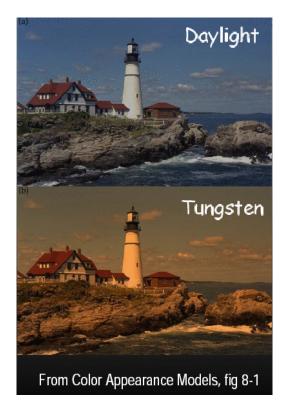
- illumination:
 - candle2000K
 - A: Light bulb3000K
 - sunset/ sunrise3200K
 - D: daylight6500K
 - overcastday 7000K
 - lightning>20,000K



Review: Color Constancy

- automatic "white balance" from change in illumination
- vast amount of processing behind the scenes!
- colorimetry vs. perception

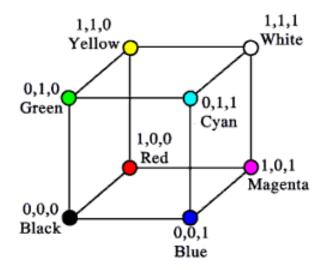


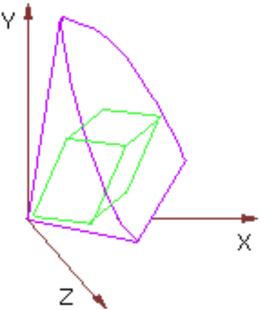


Review: RGB Color Space (Color Cube)

- define colors with (r, g, b) amounts of red, green, and blue
 - used by OpenGL
 - hardware-centric

- RGB color cube sits within CIE color space
 - subset of perceivable colors
 - scale, rotate, shear cube





Review: HSV Color Space

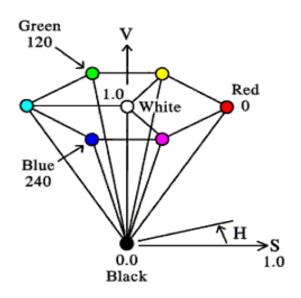
hue: dominant wavelength, "color"

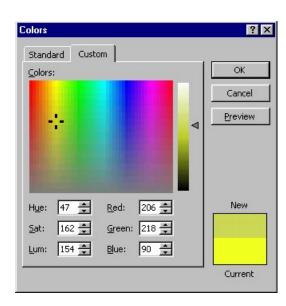
saturation: how far from grey

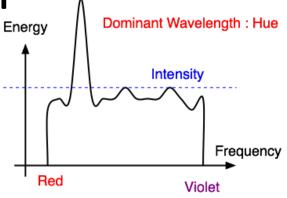
value: how far from black/white

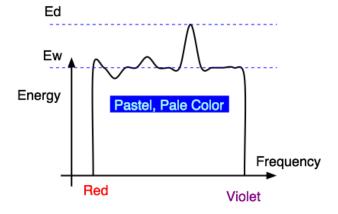
aka brightness, intensity: HSB / HSV / HSI similar

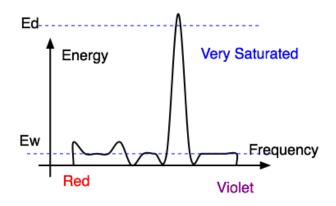
cannot convert to RGB with matrix alone











Review: HSI/HSV and RGB

- HSV/HSI conversion from RGB
 - hue same in both
 - value is max, intensity is average

$$H = \cos^{-1} \left[\frac{\frac{1}{2} [(R - G) + (R - B)]}{\sqrt{(R - G)^2 + (R - B)(G - B)}} \right] \text{ if (B > G),}$$

$$H = 360 - H$$

•HSI:
$$S = 1 - \frac{\min(R, G, B)}{I}$$
 $I = \frac{R + G + B}{3}$

•HSV:
$$S = 1 - \frac{\min(R, G, B)}{V}$$
 $V = \max(R, G, B)$

Review: YIQ Color Space

- color model used for color TV
 - Y is luminance (same as CIE)
 - I & Q are color (not same I as HSI!)

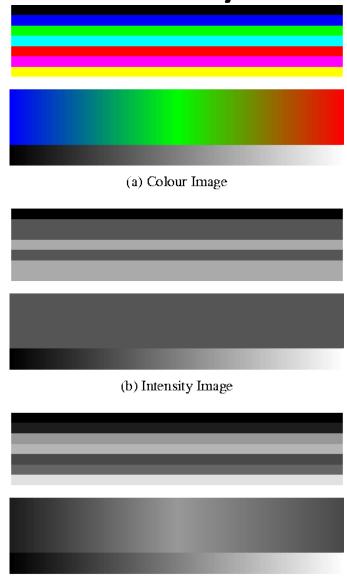
conversion from RGB is linear

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.30 & 0.59 & 0.11 \\ 0.60 & -0.28 & -0.32 \\ 0.21 & -0.52 & 0.31 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

• green is much lighter than red, and red lighter than blue

Review: Luminance vs. Intensity

- luminance
 - Y of YIQ
 - -0.299R + 0.587G + 0.114B
 - captures important factor
- intensity/value/brightness
 - I/V/B of HSI/HSV/HSB
 - -0.333R + 0.333G + 0.333B
 - not perceptually based

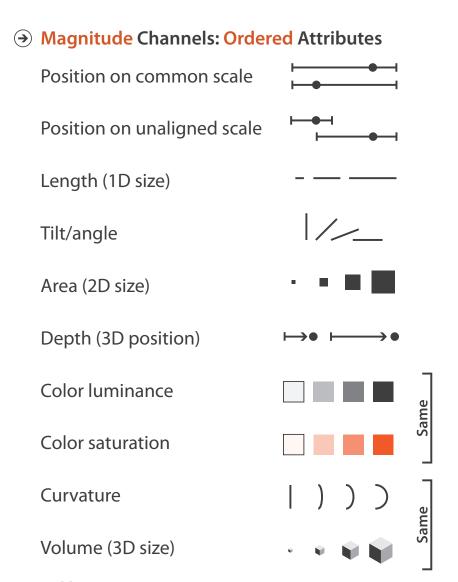


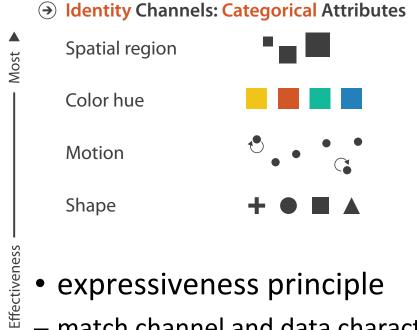
Visualization

Review: Marks and Channels

→ Points Lines Areas marks –geometric primitives **→** Color Position • channels → Horizontal → Vertical → Both –control appearance of marks **→** Shape **→** Tilt → Size → Length → Area → Volume

Review: Channel Rankings





- expressiveness principle
- match channel and data characteristics
- effectiveness principle
- encode most important attributes with highest ranked channels