University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2016

Tamara Munzner

Final Review 2

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2016

Viewing, Continued

Review: From VCS to NDCS

perspective view volume orthographic view volume

y=top

y=bottom

z=-near

« orthographic camera
« center of projection at
infinity
* no perspective
convergence 3

y=bottom

Review: Orthographic Derivation

« scale, translate, reflect for new coord sys

NDCS

z=-near

Review: Orthographic Derivation

* scale, translate, reflect for new coord sys

2 0 0 _ right +lefi
right — left right — left
0 2 0 _ top +bot
P top —bot top - bot P
0 0 -2 _ ffzr +near
far - near far — near
0 0 0 1

Review: Projection Normalization

» warp perspective view volume to orthogonal

view volume

« render all scenes with orthographic projection!

« aka perspective warp

=0 z=d

/

|

Review: Separate Warp From Homogenization

viewing clipping normqlized
vCs va2c CCS C2N device
iecti) " NDCS
transf‘ormation " divrision
alter w Iw

» warp requires only standard matrix multiply

« distort such that orthographic projection of
distorted objects is desired persp projection

* w is changed
« clip after warp, before divide
« division by w: homogenization

Review: Perspective Derivation

* shear
. ! 2n oy Tl 0
» change x/y if asymmetric |,_; -l
r/l, tib o 2 b,
(=b 1-b)
* scale 0 o —Utm -2/
. L f-n f-n
* projection-normalization 0 _1 0
* pre-warp according to z
NDCS
(1,1,1)
z
R

y=bottom z=-near

x=right

Review: N2D Transformation

o o Vidh_1[widh 0 o width(x, +1)~1
5 2 2|2 ’ 10 0 0]fx, 2
ol lo 1 o heiene 1|l o heighe o Moy g oy, | |heightcyy et
1= 2 2 2 P 2
By oy deh o o deth | 2 depth(z, +1)
! - — Yo 0 o 1|1 I —
000 i 0 0 01 1

Display z range is 0 to 1.
glDepthRange(n,f) can constrain

reminder: further, but depth = 1 is both
NDC z range is -1 to 1 max and default

U x 500
y 04y

height

X viewport

width

Review: Pr

scene.add(x)

following pipeline from top/left to
bottom/right: moving object POV

j : . _THREE.P tiveC:
object world viewing erspectiveCamera(...)

wcs W2V ycs

alter w

ocs
) modeling] }_‘

m.makeTranlation(x,y,z) camera.lookAt(...)
m.makeRotation(a,x,y,z)
x.setMatrix(m)

OCS - object coordinate system
canvas.{w,h}

WCS - world coordinate system gl.viewport(x,y,a,b)

VCS - viewing coordinate system

CCS - clipping coordinate system

NDCS - normalized device coordinate system

DCS - device coordinate system

C
Viswing i }—‘ transformation L
clipping

C2N |/w ccs

perspective

normalized

device
} N2D NDCS

viewport
transformation

device
DCs

Review: WebGL Example

go back from end of pipeline to beginning: coord frame POV!

read down: transforming

object world viewing clipping
ocs O wcs ves o vac 4R
__[modeling _ }— viewing }_A

ccCs
gl.viewport(0,0,w,h);

vCs

THREE.PerspectiveCamera(view angle, aspect, near, far)

WCS u_xformMatrix = Identity()

gl.uni. ix4fv (u_ ix, false, ix) ;
0ocs1)
ix(u_s ix);
var torso = new THREE.
scene.add(torso); 1

Review: Coord Sys: Frame vs Point
read up: transforming points,

between coordinate frames, up from frame B coords to

from frame A to frame B frame A coords
GL command order
DCS displa
D2N gI.viewport(E,y,a,) N2D
NDCS normalized devide
N2v THREE.PerspectiveCamera(...) V2N
VCS viewin
vaw camera.lookAt(... w2v
WCS world
W20 m.makeRotationX(...) o2w
0CS object

‘ pipeline interpretatioh

Post-Midterm Material

OPENGL RENDERINGPIPELINE

Scene Camera

Vertices
and attributes

Device Coords

—_ Vertex Shader |y, | Vertex Post-

—) | Rasterization|. _
Processin

—) |FragmentShader | — [Per-Sample
Operations

——) Framebuffer

Image

VERTEX SHADER

Uniform variables

(11
000 |0 0 0 0, IVerlexshader | L2 ¢ ,
Attributes gl_Position
Varying variables
Vertex buffer Assembler

FRAGMENT SHADER

Uniform variables
— | Fragment shader ikl e lele] ol l®
Varying variables Screencolor |||l |] "]

Frame buffer

OPENGL RENDERINGPIPELINE

‘éiféices Vertex Shader

attributes

Vertex Post-Processing

Viewport transform
Clipping

Modelview transform

Per-vertex attributes

Rasterization Fragment Shader

I

Lighting/shading

—» Framebuffer

Interpolation

Per-Sample Operations
—> ple Op
Depth test

Blending

Scan conversion > Texturing/... -

Clipping/Rasterization/Interpolation

Review: Clipping

« analytically calculating the portions of
primitives within the viewport

—
™~

Review: Clipping

-W, <X <W,

W <Y, <W,
« Perform clipping in clip-coordinates!
« After projection and before dividing by w

Vertex Shader

Modelview transform
Vertices [modeling view —
1" [transformation > fransformation| ————> | P" =
Object World lip
ordinate

-W, <7 <W,

Camera
Coordinate Coordinate Coordinate Cox
System. System System System

Per-vertex attributes

Vertex Post-Processing

perspective
divide

—t

viewport
transform

clipping

—

Normalized Window

Device Coordinates
Coordinates

Review: Clipping coordinates

Eye coordinates (projected) - clip coordinates >
normalized device coordinates (NDCs)

Dividing clip coordinates (X,,),,Z.,,)

bythe w.(w,=w,) component (the fourth component in
the homogeneous coordinates) yields normalized device
coordinates (NDCs).

Review: Scan Conversion

 convert continuous rendering primitives into discrete
fragments/pixels

« given vertices in DCS, fill in the pixels

« display coordinates required to provide scale for
discretization

Review: Scanline Idea
« scanline: a line of pixels in an image
« basic structure of code:
+ Setup: compute edge equations, bounding box
« (Outer loop) For each scanline in bounding box...

 (Inner loop) ...check each pixel on scanline, evaluating
edge equations and drawing the pixel if all th

Review: Bilinear Interpolation

« interpolate quantity along L and R edges,
as a function of y

« then interpolate quantity as a function of x

PI
positive
o o
| [: ” :: 2 . Py P(x,y)
an e [ooLz |l] y -
f-n f-n
RIS I B — } ‘
| P,
21 22 24
Review: Barycentric Coordinates Review: Computing Barycentric
. , - , _ Coordinates B
- weighted (affine) combination of vertices * 2D triangle area P‘;’;B(;Y()’)-
« half of parallelogram area R
« from cross product
— (auBy) =
P=a:R+p-P+ 1P A= Apy +Ap; +Apg 2;?071) i . .
P 1.00) B Lighting/Shading
) (1,0,
a+fy=1 0 =0 o=Ap /A I — .
Osafysl @O ,=05 A= 5\ AP, x KPR, 2
P B =Ap, /A
P= :’C (d i’d z*ﬁ :]*ﬁ[hﬁzb 1’:*%5] a,=1 weighted combination of three points
116 2 174 116 \0+0 h PZ ©4.0) 'Y=AP3/A

27

28

Review: Reflectance

* specular: perfect mirror with no scattering
* gloss: mixed, partial specularity
* diffuse: all directions with equal energy

specular + glossy + diffuse =
reflectance distribution

Review: Reflection Equations

1 n
Lgittuse = K Tiigne @ * D . i i

nxhinv “ v
specular = kSIligm (v ° r) 1y) - g
= 7 / .
R=2(N(N-L)-L : /\‘b
n,. I
Lpccutar = KLy (o m)
h=(1+v)/2 % pm

reminder: normalize all vectors: n,|,r,v,h

Review: Reflection Equations

full Phong lighting model

— combine ambient, diffuse, specular components
#lights

n,.
sh
Lt =KoLy + 2 LK (o 1) + K (vor) ™)
i=1
« Blinn-Phong lighting

#lights
Ilotal =k,I

n,
atambient T E Lk ,(m*l,)+k,(hen,) shiny

i=1

— don’ t forget to normalize all lighting vectors!! n,l,r,v,h

Review: Lighting

« lighting models
— ambient
* normals don’t matter
— Lambert/diffuse
* angle between surface normal and light
— Phong/specular
« surface normal, light, and viewpoint
* light and material interaction
— component-wise multiply

* (Llgh) x (m,mgmy) = (I*m,, I;*myg, I,*m,)

Review: Light Sources
* directional/parallel lights
* point at infinity: (x,y,z,0)T

* point lights
« finite position: (x,y,z,1)"

* spotlights

* position, direction, angle

* ambient lights

b bl

Review: Light Source Placement

* geometry: positions and directions
— standard: world coordinate system
« effect: lights fixed wrt world geometry

— alternative: camera coordinate system
« effect: lights attached to camera (car headlights)

Review: Shading Models

« flat shading
— for each polygon
* compute Phong lighting just once
¢ Gouraud shading
— compute Phong lighting at the vertices
— for each pixel in polygon, interpolate colors
* Phong shading
— for each pixel in polygon
* interpolate normal
« compute Phong lighting

Review: Non-Photorealistic Shading
* cool-to-warm shading: k, = LA k,c,+(1-k,)c,
* draw silhouettes: if (e-my)(e-'n,)<0 ,e=edge-eye vector
* draw creases: if (n,"n,) = threshold

standard cool-to-warm

http://www.cs.utah.edu/~gooch/SIG98/pap ing html

with edges/creases

Texturing

Review: Texture Coordinates

 texture image: 2D array of color values (texels)

« assigning texture coordinates (u,v) at vertex with object
coordinates (x,y,z,w)

— sometimes called (s,t) instead of (u,v)

— use interpolated (u,v) for texel lookup at each pixel

— use value to modify a polygon color or other property
— specified by programmer or artist

Review: Tiled Texture Map

7w A
/
+

4

Temwre\\\ (0 0) Object (o 1) Mapped Texture
N //, s

clamp vs repeat

(4,0) (4,4)

/>§-=

Tex (0,0) (0,4) Mapped Texure

Review: Fractional Texture Coordinates

texture
image -~
0,1) 1,1 w (0,.5) (-25,.5)

\
(0,0) (1,0) (0,0) (-25,0)

Review: MIPmapping
image pyramid, precompute averaged versions
— avoid aliasing artifacts
— only requires 1/3 more storage

With MIP-mapping

Review: Bump Mapping: Normals As Texture
v g

N

create illusion of complex
geometry model

control shape effect by locally
perturbing surface normal

Review: Displacement Mapping

* bump mapping gets
silhouettes wrong ORIGINAL MESH

+ shadows wrong too

DISPLACEMENT MAP

* change surface geometry
instead
« only recently available
with realtime graphics
* need to subdivide surface

MESH WITH DISPLACEMENT
https://en.wikipedi i

Review: Environment Mapping
cheap way to achieve reflective effect
— generate image of surrounding
— map to object as texture
sphere mapping: texture is distorted fisheye view
— point camera at mirrored sphere

— use spherical texture coordinates

Review: Environment Cube Mapping

* 6 planar textures, sides of cube

* point camera in 6 different directions,
facing out from origin

Review: Perlin Noise as Procedural Texture

« several good explanations
* http://www.noi: chine.com/talk1l

* http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
* http://www.robo-murito.net/code/ perlin-noise-math-fag.html

http://mrl.nyu.edu/~perlin/planet/

Review: Perlin Noise

* coherency: smooth not abrupt changes
* turbulence: multiple feature sizes

Ray Tracing

Review: Recursive Ray Tracing

ray tracing can handle
— reflection (chrome/mirror) Light

— refraction (glass) Eye [T _Image Plane Source
— shadows 277
* one primary ray per pixel ','

spawn secondary rays
— reflection, refraction

« if another object is hit, recurse to find
itts color

— shadow
- cast ray from intersection point to

light source, check if intersects
another object

— termination criteria
* no intersection (ray exits scene)
* max bounces (recursion depth)
* attenuated below threshold

Reflected
Ray

Refracted
Ray

Review: Reflection and Refraction

. . n
* reflection: mirror effects

— perfect specular reflection 0|6

« refraction: at boundary
* Snell’s Law d n

— light ray bends based on
R 0
refractive indices ¢, c, !

¢ sinf), =c,sin6,

Review: Ray Tracing

* issues:
— generation of rays
— intersection of rays with geometric primitives
— geometric transformations
— lighting and shading

— efficient data structures so we don’ t have to test
intersection with every object

Backstory: 2D Parametric Lines

p(-1.0)

x| |xg + t(x, = xg)

y Yo+ 1y = ¥o)

*p(1) =p, +1(p, —Py)
‘p)=0+1(d)
* start at point p,,

go towards p,,
according to parameter t

= p(0) =py, p(1)=p;

Review: Ray-Sphere Intersections, Lighting

* Intersections: solving a set of equations
— Using implicit formulas for primitives

Direct illumination: gradient of implicit surface

Example: Ray-Sphere intersection Example: Sphere normals

Procedural/Collision

Review: Procedural Modeling

textures, geometry

— nonprocedural: explicitly stored in memory

procedural approach

— compute something on the fly
* not load from disk

— often less memory cost

— visual richness
* adaptable precision

noise, fractals, particle systems

.

.

Review: Language-Based Generation

e L-Systems
— F: forward, R: right, L: left 4/\;5;:;:;::;,
— Koch snowflake: m
F = FLFRRFLF Lo
— Mariano’s Bush: rovats
F=FF-[-F+F+F]+[+F-F-F] Lengies/zd
* angle 16

http://spanky.triumf.ca/www/fractint/Isys/plants.html|

ray:x()=p, +v,t, JO)=p, +v,t, 2)=p.4vi v 2x
(unit) sphere: x> +yj 47t = / n(x, ¥, z) = 2y
quadratic equation in ¢ : V4 P
A

0=(p, +v0)" +(p, +9,0) +(p. +0.0° -1

=W v +02)+2(p,v, +py, +p.v,)

o0y +p0)-1

Review: Fractal Terrain
* 1D: midpoint displacement — T

— divide in half, randomly displace
— scale variance by half

2D: diamond-square 4

— generate new value at midpoint

— average corner values + random displacemen
« scale variance by half each time

oA A

http://www.gameprogrammer.com/fractal.html

Review: Particle Systems
changeable/fluid stuff

— fire, steam, smoke, water, grass, hair, dust,
waterfalls, fireworks, explosions, flocks

life cycle
— generation, dynamics, death

rendering tricks
— avoid hidden surface computations

Review: Collision Detection

* boundary check
— perimeter of world vs. viewpoint or objects
« 2D/3D absolute coordinates for bounds
« simple point in space for viewpoint/objects
* set of fixed barriers
— walls in maze game
* 2D/3D absolute coordinate system
* set of moveable objects
— one object against set of items
* missile vs. several tanks
— multiple objects against each other
* punching game: arms and legs of players
* room of bouncing balls

Review: Collision Proxy Tradeoffs

* collision proxy (bounding volume) is piece of geometry used to
represent complex object for purposes of finding collision
* proxies exploit facts about human perception
¢ we are bad at determining collision correctness
¢ especially many things happening quickly

D8 4

7
Sphere AABB OBB 6-dop Convex Hull

increasing complexity & tightness of fit

decreasing cost of (overlap tests + proxy update)

Review: Spatial Data Structures

uniform grids BSP trees
bounding volume hierarchies kd-trees
octrees OBB trees

:;7

T FH

TR H

T FE

61 [T HHFH

Hidden Surfaces / Picking / Blending

Review: Z-Buffer Algorithm

* augment color framebuffer with Z-buffer or
depth buffer which stores Z value at each pixel
— at frame beginning, initialize all pixel depths to
— when rasterizing, interpolate depth (Z) across

polygon
— check Z-buffer before storing pixel color in
framebuffer and storing depth in Z-buffer

— don’t write pixel if its Z value is more distant than
the Z value already stored there

Review: Depth Test Precision

— reminder: perspective transformation maps eye-space
(VCS) zto NDC z (Ex
- +A)

E 0 A O x Ex+Az Py
0 F B 0| vy |_| Fy+Bz |_ —(—’+B)
00 C Dz Cz+D :
00 -1 01 _ ,(chB)
D C=—(j."+n) D=—2fn i
Zype =—|C+ f-n f-n
Zyes

— thus: depth buffer essentially stores 1/z (for VCS z)

— high precision for near, low precision for distant

Review: Integer Depth Buffer

reminder from viewing discussion: depth ranges

— VCS range [zNear, zFar], NDCS range [-1,1], DCS z range [0,1]
convert fractional real number to integer format

— multiply by 2”n then round to nearest int

— where n = number of bits in depth buffer

24 bit depth buffer = 2424 = 16,777,216 possible values
— small numbers near, large numbers far
consider VCS depth: z,cs = (1<<N)*(a + b / z,c5)

— N = number of bits of Z precision, 1<<N bitshift = 2"

— a=zFar/(zFar-zNear)

— b =zFar * zNear / (zNear - zFar)

— 2z, = distance from the eye to the object

.

Full derivation at https://www.opengl.org/archives/resources/fag/technical/depthbuffer.htm

Review: Picking Methods

.

raycaster intersection support

ves

offscreen buffer color coding

AN A

bounding extents

Review: Painter’s Algorithm

* draw objects from back to front
* problems: no valid visibility order for
— intersecting polygons
— cycles of non-intersecting polygons possible

Review: BSP Trees

* preprocess: create binary tree
— recursive spatial partition

— viewpoint independent

Review: BSP Trees

* runtime: correctly traversing this tree enumerates objects
from back to front

— viewpoint dependent: check which side of plane viewpoint
is on at each node

— draw far, draw object in question,
draw near F N

Review: Object Space Algorithms

determine visibility on object or polygon level
— using camera coordinates

resolution independent

— explicitly compute visible portions of polygons
early in pipeline

— after clipping

requires depth-sorting

— painter’s algorithm

— BSP trees

.

Review: Image Space Algorithms

— perform visibility test for in screen coordinates
« limited to resolution of display
* Z-buffer: check every pixel independently

— performed late in rendering pipeline

Review: Back-face Culling

ves \
a
LTy AT
- z eye
z eye \ " \
Ves: cullif angle between eye-
NDCS face vector and normal > 90
eye P NDCs: cull it N, >0

Review: Invisible Primitives

why might a polygon be invisible?

— polygon outside the field of view / frustum
« solved by clipping

— polygon is backfacing
* solved by backface culling

— polygon is occluded by object(s) nearer the viewpoint
« solved by hidden surface removal

Review: Blending with Premultiplied Alpha

« specify opacity with alpha channel a
— a=1: opaque, a=.5: translucent, a=0: transparent
* how to express a pixel is half covered by a red object?
— obvious way: store color independent from transparency (r,g,b,ct)
« intuition: alpha as transparent colored glass
~100% transparency can be represented with many different RGB values
« pixel value is (1,0,0,.5)
« upside: easy to change opacity of image, very intuitive
« downside: compositing calculations are more difficult - not associative
— elegant way: premultiply by o so store (ar, ag, ab,o)
* intuition: alpha as screen/mesh
~ RGB specifies how much color object contributes to scene
~alpha specifies how much object obscures whatever is behind it (coverage)
~ alpha of 5 means half the pixel is covered by the color, half completely transparent
~ only one 4-tuple represents 100% transparency: (0,0,0,0)
« pixel value s (.5, 0, 0, .5)
« upside: compositing calculations easy (& additive blending for glowing!)
* downside: less intuitive

Backstory & Review: Trichromacy

.

trichromacy
— three types of cones: S, M, L
— color is combination of cone stimuli
« different cone responses: area function of wavelength
for a given spectrum
— multiply by responses curve
— integrate to get response

Input Stimulus Cone Response Curves. Product > Response

o Relatve Power
<
Spectral Sensitvty
I

From A Field Guide to Digital Color, ® AK. Peters, 2003

Review: Metamers

brain sees only cone response
— different spectra appear the same: metamers

Pure Spectural Mixed-spectra
Color Metamer

rzo
Relative Power

1 s
[— [—
— L —

W
re

Wavelength (nm)

Review: Measured vs. CIE XYZ Color Spaces

Stiles-Burch, negative lobe CIE standard, all positive

Wavelength (nm)

Wavelength (nm)

* measured basis transformed basis
— monochromatic lights — “imaginary” lights
— physical observations — all positive, unit area

— negative lobes — Yisluminance

Backstory: Spectral Sensitivity Curve

14
©

4
o

o
S

Relative Sensitivity

het
o

)

Review: CIE Chromaticity Diagram and Gamuts

 plane of equal brightness showing chromaticity

« gamut is polygon, device primaries at corners
— defines reprodhl’JcibIe color range

Review:
Blackbody
Curve

illumination:

— candle

2000K

A: Light bulb

3000K

sunset/

sunrise

3200K

D: daylight

6500K

— overcast
day 7000K

— lightning
>20,000K

Review: Color Constancy
* automatic “white balance” from change in
illumination

* vast amount of processing behind the scenes!
* colorimetry vs. perception

1R

Review: RGB Color Space (Color Cube)

+ define colors with (r, g, b) amounts of Lo L
red, green, and blue
— used by OpenGL G 0,11
— hardware-centric 100 | O
Red 1,0,1
Magenta
000,
Biack Al
Blue

RGB color cube sits within CIE color
space

— subset of perceivable colors

— scale, rotate, shear cube

Review: HSV Color Space

Enorgy Dominant Wavelengh : Hue

hue: dominant wavelength, “color” Intonsiy
saturation: how far from grey
value: how far from black/white - Freauency
— aka brightness, intensity: HSB / HSV / HSI similar o

cannot convert to RGB with matrix alone

]

Energy Pasiol, Pala Color

Frequency

Violet

Energy Very Saturated

Violet

Review: HSI/HSV and RGB

HSV/HSI conversion from RGB
— hue same in both
— value is max, intensity is average

®-6)+(r-5)]

if B> G),

H =cos™
J(R-G)’ +(R-B)(G-B) | H=360-H

s §op_minRGB) ., R+G+B
! 3
v 521 MNRGB) Y - max(RG,B)
v

Review: YIQ Color Space ,!
color model used for color TV
—Y is luminance (same as CIE)

— 1 & Qare color (not same | as HSI!)
— using Y backwards compatible for B/W TVs
— conversion from RGB is linear

Y 030 059 0.1117[R
1{=10.60 -028 -032(|G
o 021 -052 031 |[B
« green is much lighter than red, and red lighter than blue

Review: Luminance vs. Intensity

* luminance
—YofYlQ
—0.299R +0.587G + 0.114B
— captures important factor

(@ Colow lmage

intensity/value/brightness
—1/V/B of HSI/HSV/HSB O Tnensiy Image
—0.333R +0.333G + 0.333B
— not perceptually based

(© Luninance Inage

www.csse.uwa.edu.au/~robyn/Visioncourse/colour/lecture/nodeS5.html

Visualization

Review: Marks and Channels

* marks ® Points @ Lines © Areas

o teete SN ﬁ-.

—geometric primitives

©}

) Position ® Color
* channels
2 Horizontal = Vertical > Both

—control appearance
of maris — 3 o /77
® Shape ® Tilt
A ¥ / h |/
® Size
> Length > Area > Volume

—— 000 -vwi

Review: Channel Rankings

3 Magnitude Channels: Ordered Attributes) Identity Channels: Categorical Attributes

Position on common scale o " “é Spatial region gl
Position on unaligned scale "3, Color hue [§ 0]
Length (1D size) — Motion ER
Tilt/angle |/ Shape + O MW A
Area (20 size) N] |
expressiveness principle
Depth (3D position) e ——e .
match channel and data characteristics
Color lurminance OFmmE | | . effectiveness principle
Color saturation O m — encode most important attributes with
highest ranked channels
Curvature BED) e
H
Volume (3D size) cvwg

