# University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2016 

Tamara Munzner

## Color

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2016

## Vision/Color

## RGB Color

- triple (r, g, b) represents colors with amount of red, green, and blue
- hardware-centric
- used by OpenGL



## Alpha

- fourth component for transparency
- $(r, g, b, \alpha)$
- fraction we can see through
- $c=\alpha c_{f}+(1-\alpha) c_{b}$
- as we saw in blending/compositing already


## Additive vs. Subtractive Colors

- additive: light
- monitors, LCDs
- RGB model
- subtractive: pigment

$$
\left[\begin{array}{c}
C \\
M \\
Y
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

- printers
- CMY model
- dyes absorb light

additive

subtractive


## Component Color

- component-wise multiplication of colors
- $(a 0, a 1, a 2)$ * $(b 0, b 1, b 2)=(a 0 * b 0, a 1 * b 1, a 2 * b 2)$

Light $\times$ object $=$ color
1, 1, 0.8


- why does this work?
- must dive into light, human vision, color spaces


## Basics Of Color

- elements of color:



## Basics of Color

- physics
- illumination
- electromagnetic spectra
- reflection
- material properties
- surface geometry and microgeometry
- polished versus matte versus brushed
- perception
- physiology and neurophysiology
- perceptual psychology


## Light Sources

- common light sources differ in kind of spectrum they emit:
- continuous spectrum
- energy is emitted at all wavelengths
- blackbody radiation
- tungsten light bulbs
- certain fluorescent lights
- sunlight
- electrical arcs
- line spectrum
- energy is emitted at certain discrete frequencies


## Blackbody Radiation

- black body
- dark material, so that reflection can be neglected
- spectrum of emitted light changes with temperature
- this is the origin of the term "color temperature"
- e.g. when setting a white point for your monitor
- cold: mostly infrared
- hot: reddish
- very hot: bluish
- demo:

http://www.mhhe.com/physsci/astronomy/applets/Blackbody/frame.htnd


## Electromagnetic Spectrum



## Electromagnetic Spectrum

## THE ELECTROMAGNETIC SPECTRUM



## White Light

- sun or light bulbs emit all frequencies within visible range to produce what we perceive as "white light"



## Sunlight Spectrum

- spectral distribution: power vs. wavelength



Electromagnetic Spectrum

## Continuous Spectrum

- sunlight
- various "daylight" lamps



## Line Spectrum

- ionized gases
- lasers
- some
fluorescent lamps



## White Light and Color

- when white light is incident upon an object, some frequencies are reflected and some are absorbed by the object
- combination of frequencies present in the reflected light that determines what we perceive as the color of the object


## Hue

- hue (or simply, "color") is dominant wavelength/ frequency

- integration of energy for all visible wavelengths is proportional to intensity of color


## Saturation or Purity of Light

- how washed out or how pure the color of the light appears
- contribution of dominant light vs. other frequencies producing white light
- saturation: how far is color from grey
- pink is less saturated than red
- sky blue is less saturated than royal blue



## Intensity vs. Brightness

- intensity : physical term
- measured radiant energy emitted per unit of time, per unit solid angle, and per unit projected area of the source (related to the luminance of the source)
- lightness/brightness: perceived intensity of light
- nonlinear


## Perceptual vs. Colorimetric Terms

- Perceptual
- Hue
- Saturation
- Lightness
- reflecting objects
- Brightness
- light sources
- Colorimetric
- Dominant wavelength
- Excitation purity
- Luminance
- Luminance


## Physiology of Vision

- the retina
- rods
- b/w, edges
- cones
- 3 types
- color sensors
- uneven distribution
- dense fovea



## Physiology of Vision

- Center of retina is densely packed region called the fovea.
- Cones much denser here than the periphery

1.35 mm from rentina center

$4 \mu \mathrm{~m}$

8 mm from rentina center

## Foveal Vision

- hold out your thumb at arm's length



## Tristimulus Theory of Color Vision

- Although light sources can have extremely complex spectra, it was empirically determined that colors could be described by only 3 primaries
- Colors that look the same but have different spectra are called metamers


## Trichromacy

- three types of cones
- L or R, most sensitive to red light (610 nm)
- M or G, most sensitive to green light ( 560 nm )
- S or B, most sensitive to blue light ( 430 nm )

- color blindness results from missing cone type(s)


## Metamers

- a given perceptual sensation of color derives from the stimulus of all three cone types

- identical perceptions of color can thus be caused by very different spectra
- demo


## Color Spaces

- three types of cones suggests color is a 3D quantity. how to define 3D color space?

- idea: perceptually based measurement
- shine given wavelength $(\lambda)$ on a screen
- user must control three pure lights producing three other wavelengths
- used $R=700 \mathrm{~nm}, G=546 \mathrm{~nm}$, and $B=436 \mathrm{~nm}$
- adjust intensity of RGB until colors are identical
- this works because of metamers!
- experiments performed in 1930s


## Negative Lobes


wavelength ( nm )

- sometimes need to point red light to shine on target in order to match colors
- equivalent mathematically to "removing red"
- but physically impossible to remove red from CRT phosphors
- can' t generate all other wavelenths with any set of three positive monochromatic lights!
- solution: convert to new synthetic coordinate system to make the job easy


## CIE Color Space

- CIE defined 3 "imaginary" lights $X, Y, Z$
- any wavelength $\lambda$ can be matched perceptually by positive combinations

Note that:
$X \sim R$
$Y \sim G$
$Z \sim B$

## Measured vs. CIE Color Spaces



- measured basis
- monochromatic lights
- physical observations
- negative lobes

- transformed basis
- "imaginary" lights
- all positive, unit area
- Y is luminance, no hue
- X,Z no luminance


## CIE and Chromaticity Diagram

- X, Y, Z form 3D shape
- project $X, Y, Z$ on $X+Y+Z=1$ plane for 2D color space
- chromaticity diagram
- separate color from brightness
- $x=X /(X+Y+Z)$
- $y=Y /(X+Y+Z)$



## CIE "Horseshoe" Diagram Facts

- all visible colors lie inside the horseshoe
- result from color matching experiments
- spectral (monochromatic) colors lie around the border
- straight line between blue and red contains purple tones
- colors combine linearly (i.e. along lines), since the xy-plane is a plane from a linear space


## CIE "Horseshoe" Diagram Facts

- can choose a point C for a white point
- corresponds to an illuminant
- usually on curve swept out by black body radiation spectra for different temperatures


## Blackbody Curve

- illumination:
- candle 2000K
- A: Light bulb 3000K
- sunset/ sunrise 3200K
- D: daylight 6500K
- overcast day 7000K
- lightning
>20,000K



## CIE "Horseshoe" Diagram Facts

- can choose a point C for a white point
- corresponds to an illuminant
- usually on curve swept out by black body radiation spectra for different temperatures
- two colors are complementary relative to C when are
- located on opposite sides of line segment through C
- so $C$ is an affine combination of the two colors
- find dominant wavelength of a color:
- extend line from $C$ through color to edge of diagram
- some colors (i.e. purples) do not have a dominant wavelength, but their complementary color does


## Color Interpolation, Dominant \& Opponent Wavelength



## Device Color Gamuts

- gamut is polygon, device primaries at corners
- defines reproducible color range
- $\mathrm{X}, \mathrm{Y}$, and Z are hypothetical light sources, no device can produce entire gamut



## Display Gamuts



From A Field Guide to Digital Color, © A.K. Peters, 2003

## Projector Gamuts



## Gamut Mapping

- how to handle colors outside gamut?
- one way: construct ray to white point, find closest displayable point within gamut



## RGB Color Space (Color Cube)

- define colors with (r, g, b) amounts of red, green, and blue
- used by OpenGL
- hardware-centric
- RGB color cube sits within CIE color space
- subset of perceivable colors
- scale, rotate, shear cube



## HSV Color Space

- more intuitive color space for people
- $\mathrm{H}=\mathrm{Hu}$
- dominant wavelength, "color"
- $S=$ Saturation
- how far from grey/white
- V = Value
- how far from black/white
- also: brightness B, intensity I, lightness L





## HSI/HSV and RGB

- HSV/HSI conversion from RGB not expressible in matrix
- H=hue same in both
- $\mathrm{V}=$ value is max, $\mathrm{l}=$ intensity is average
$H=\cos ^{-1}\left[\frac{\frac{1}{2}[(R-G)+(R-B)]}{\sqrt{(R-G)^{2}+(R-B)(G-B)}}\right] \begin{aligned} & \text { if }(\mathrm{B}>\mathrm{G}), \\ & H=360-H\end{aligned}$
HSI: $\quad S=1-\frac{\min (R, G, B)}{I} \quad I=\frac{R+G+B}{3}$
HSV: $S=1-\frac{\min (R, G, B)}{V} \quad V=\max (R, G, B)$


## YIQ Color Space

- color model used for color TV
- Y is luminance (same as CIE)
- I \& Q are color (not same I as HSI!)
- using Y backwards compatible for B/W TVs
- conversion from RGB is linear
- expressible with matrix multiply

$$
\left[\begin{array}{l}
Y \\
I \\
Q
\end{array}\right]=\left[\begin{array}{ccc}
0.30 & 0.59 & 0.11 \\
0.60 & -0.28 & -0.32 \\
0.21 & -0.52 & 0.31
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

- green is much lighter than red, and red lighter than blue


## Luminance vs. Intensity

- luminance
- Y of YIQ
- $0.299 \mathrm{R}+0.587 \mathrm{G}+0.114 \mathrm{~B}$
- captures important factor
- intensity/brightness
- I/V/B of HSI/HSV/HSB
- $0.333 \mathrm{R}+0.333 \mathrm{G}+0.333 \mathrm{~B}$
- not perceptually based


(a) Colour Image


(b) Intensity Image



## Opponent Color

- definition
- achromatic axis
- R-G and Y-B axis
- separate lightness from chroma channels
- first level encoding
- linear combination of LMS
- before optic nerve
- basis for perception
- "color blind" = color deficient
- degraded/no acuity on one axis
- 8\%-10\% men are red/green deficient


## rehue.net

- simulates color vision deficiencies


Normal vision



Deuteranope



Protanope



Tritanope

## Color/Lightness Constancy

- color perception depends on surrounding
- colors in close proximity
- simultaneous contrast effect

- illumination under which the scene is viewed


## Color/Lightness Constancy



Image courtesy of John McCann

## Color/Lightness Constancy



Image courtesy of John McCann

## Color Constancy

- automatic "white balance" from change in illumination
- vast amount of processing behind the scenes!
- colorimetry vs. perception


From Color Appearance Models, fig 8-1

## Stroop Effect

- red
- blue
- orange
- purple
- green


## Stroop Effect

- blue
- green
- purple
- red
- orange
- interplay between cognition and perception

