
2015‐01‐12

1

CPSC 314
Computer Graphics

Dinesh K. Pai

Nuts and bolts of

Graphics programming

1

Announcements

 Assignment 1 now out. Due Jan 23.
 See <coursepage>/resources.html

 There was a small fix at 11:15am today. So if you
downloaded before that, please get the code again.

 Today: an introduction to programming with
GLSL and WebGL

2

2015‐01‐12

2

Introduction to Assignment 1

 Switch to demo

3

How to get started..

 First download assignment template and ensure
that it runs in your preferred browser. See
https://github.com/mrdoob/three.js/wiki/How-to-
run-things-locally

 Work on the different parts in sequence. Later
parts will need material covered later this week.

4

2015‐01‐12

3

The good news

 Even though there are lots of details and
options, a few useful things go a long way.

 After initial setup, most of your effort will be on
translating graphics concepts into code

 For Assignment 1, this is already setup for you.
You mainly have to focus on the vertex shader.

6

7

2015‐01‐12

4

Minimalist shaders

8

A closer look at GLSL shaders

9

2015‐01‐12

5

GLSL

 OpenGL shading language

 C-like, w. data types and functions useful for graphics
 vec3, vec4, dvec4, mat4, sampler2D …

(OpenGL data are floats unless qualified)

 <matrix-vector multiplication>, reflect, refract

 Used for both vertex shaders and fragment shaders,
with small differences

 WebGL uses GLSL 1.0, which doesn’t have many
features of versions available in OpenGL
https://www.khronos.org/registry/gles/specs/2.0/GLSL
_ES_Specification_1.0.17.pdf

10

Creating a Shader Program

Source: OpenGL programming guide, 8th edition 11

2015‐01‐12

6

Vertex Shader from
textbook’s hw2d example

#version 130

uniform float uVertexScale;

in vec2 aPosition;
in vec3 aColor;
in vec2 aTexCoord0, aTexCoord1;

out vec3 vColor;
out vec2 vTexCoord0, vTexCoord1;

void main() {
gl_Position = vec4(aPosition.x * uVertexScale, aPosition.y, 0,1);
vColor = aColor;
vTexCoord0 = aTexCoord0;
vTexCoord1 = aTexCoord1;

} 12

Summary of Key GLSL Concepts (1)

 ‘uniform’ type qualifier
 Same for all vertices

 “in”, “out”, “varying” type qualifiers configure
data flow in the pipeline.

 “in” type qualifiers
 Input from previous shader stage

 For vertex shaders, these are per-vertex attributes

 “out” type qualifiers
 Outputs to next stage

 gl_position is built-in output variable that must be set
before rasterization

13

2015‐01‐12

7

Summary of Key GLSL Concepts (2)

 “varying” type qualifiers
 Equivalent to “out” for VS, “in” for FS

 Deprecated since GLSL 1.3

 Three.js only supports it at present

 Support for geometry, vector and matrix
arithmetic
 length, distance, dot, cross, normalize, reflect

 Compiled by the WebGL, at runtime

14

Three.js support

 THREE.ShaderMaterial() lets you set shaders,
uniforms

 Built-in uniforms and attributes. See
http://threejs.org/docs/#Reference/Renderers.W
ebGL/WebGLProgram

 Some vertex attributes
 position, normal, and uv

 Some uniforms
 modelView matrix and cameraPosition

15

2015‐01‐12

8

ShaderMaterial Example

16

http://threejs.org/docs/#Reference/Materials/ShaderMaterial

Animation (infinite) Loop

// SETUP UPDATE CALL-BACK

function update() {

requestAnimationFrame(update); // next frame

renderer.render(scene, camera);

}

// Do this last

update();

17

2015‐01‐12

9

Debugging your program

 Debugging GLSL programs can be challenging.
Keep calm. Many problems are due to strict
typing. E.g., float literals must use decimal point

 Good news: easy to run and see results. No
compilation step. Test code as you write it.

 Browsers provide some tools for JavaScript
debugging, but not for GLSL programs
 Toggle console with, e.g., <F12>

 Reload page with CTRL-R

18

Next class

 Back to 3D Math for Graphics
 Read Chapter 2, Chapter 3 up to 3.5.

19

