
2015‐01‐12

1

CPSC 314
Computer Graphics

Dinesh K. Pai

Nuts and bolts of

Graphics programming

1

Announcements

 Assignment 1 now out. Due Jan 23.
 See <coursepage>/resources.html

 There was a small fix at 11:15am today. So if you
downloaded before that, please get the code again.

 Today: an introduction to programming with
GLSL and WebGL

2

2015‐01‐12

2

Introduction to Assignment 1

 Switch to demo

3

How to get started..

 First download assignment template and ensure
that it runs in your preferred browser. See
https://github.com/mrdoob/three.js/wiki/How-to-
run-things-locally

 Work on the different parts in sequence. Later
parts will need material covered later this week.

4

2015‐01‐12

3

The good news

 Even though there are lots of details and
options, a few useful things go a long way.

 After initial setup, most of your effort will be on
translating graphics concepts into code

 For Assignment 1, this is already setup for you.
You mainly have to focus on the vertex shader.

6

7

2015‐01‐12

4

Minimalist shaders

8

A closer look at GLSL shaders

9

2015‐01‐12

5

GLSL

 OpenGL shading language

 C-like, w. data types and functions useful for graphics
 vec3, vec4, dvec4, mat4, sampler2D …

(OpenGL data are floats unless qualified)

 <matrix-vector multiplication>, reflect, refract

 Used for both vertex shaders and fragment shaders,
with small differences

 WebGL uses GLSL 1.0, which doesn’t have many
features of versions available in OpenGL
https://www.khronos.org/registry/gles/specs/2.0/GLSL
_ES_Specification_1.0.17.pdf

10

Creating a Shader Program

Source: OpenGL programming guide, 8th edition 11

2015‐01‐12

6

Vertex Shader from
textbook’s hw2d example

#version 130

uniform float uVertexScale;

in vec2 aPosition;
in vec3 aColor;
in vec2 aTexCoord0, aTexCoord1;

out vec3 vColor;
out vec2 vTexCoord0, vTexCoord1;

void main() {
gl_Position = vec4(aPosition.x * uVertexScale, aPosition.y, 0,1);
vColor = aColor;
vTexCoord0 = aTexCoord0;
vTexCoord1 = aTexCoord1;

} 12

Summary of Key GLSL Concepts (1)

 ‘uniform’ type qualifier
 Same for all vertices

 “in”, “out”, “varying” type qualifiers configure
data flow in the pipeline.

 “in” type qualifiers
 Input from previous shader stage

 For vertex shaders, these are per-vertex attributes

 “out” type qualifiers
 Outputs to next stage

 gl_position is built-in output variable that must be set
before rasterization

13

2015‐01‐12

7

Summary of Key GLSL Concepts (2)

 “varying” type qualifiers
 Equivalent to “out” for VS, “in” for FS

 Deprecated since GLSL 1.3

 Three.js only supports it at present

 Support for geometry, vector and matrix
arithmetic
 length, distance, dot, cross, normalize, reflect

 Compiled by the WebGL, at runtime

14

Three.js support

 THREE.ShaderMaterial() lets you set shaders,
uniforms

 Built-in uniforms and attributes. See
http://threejs.org/docs/#Reference/Renderers.W
ebGL/WebGLProgram

 Some vertex attributes
 position, normal, and uv

 Some uniforms
 modelView matrix and cameraPosition

15

2015‐01‐12

8

ShaderMaterial Example

16

http://threejs.org/docs/#Reference/Materials/ShaderMaterial

Animation (infinite) Loop

// SETUP UPDATE CALL-BACK

function update() {

requestAnimationFrame(update); // next frame

renderer.render(scene, camera);

}

// Do this last

update();

17

2015‐01‐12

9

Debugging your program

 Debugging GLSL programs can be challenging.
Keep calm. Many problems are due to strict
typing. E.g., float literals must use decimal point

 Good news: easy to run and see results. No
compilation step. Test code as you write it.

 Browsers provide some tools for JavaScript
debugging, but not for GLSL programs
 Toggle console with, e.g., <F12>

 Reload page with CTRL-R

18

Next class

 Back to 3D Math for Graphics
 Read Chapter 2, Chapter 3 up to 3.5.

19

