2015-01-12

CPSC 314
Computer Graphics

Dinesh K. Pai

Nuts and bolts of
Graphics programming

Announcements

= Assignment 1 now out. Due Jan 23.
= See <coursepage>/resources.html
= There was a small fix at 11:15am today. So if you
downloaded before that, please get the code again.

= Today: an introduction to programming with
GLSL and WebGL

2015-01-12

Introduction to Assignment 1

= Switch to demo

How to get started..

= First download assignment template and ensure
that it runs in your preferred browser. See
https://github.com/mrdoob/three.js/wiki/How-to-
run-things-locally

= Work on the different parts in sequence. Later
parts will need material covered later this week.

The good news

= Even though there are lots of details and
options, a few useful things go a long way.

= After initial setup, most of your effort will be on
translating graphics concepts into code

= For Assignment 1, this is already setup for you.
You mainly have to focus on the vertex shader.

* UBC CPSC 314, Vjan2015

* OQutline of a Three.js program for this course

new THREE.Scene ()
w THREE.WebGLRenderer () ;
new THREE.PerspectiveCamera (30, 1, 0.1, 1000);

new THREE.ShaderMaterial ({
\Position: gemPosition},
<VertexShaderSource>,
=r: <FragmentShaderSource>

new THREE.SphereGeometry(l, 32, 32);
SH
w THREE.Mesh (gemGeometry, gemMaterial):;

scene.add (gem) ; M(/f\
N
// SETUP UPDATE CALL-BACK M/v
function update() {
requestAnimationFrame (update) ; l
renderer.render (scene, camera);

}
update();

2015-01-12

Minimalist shaders

vertex shader

3 gemPosition;
3 color;

void main() {

color = normal;
gl_Position = projectionMatrix * modelViewMatrix * vecd (positign, 1.0):
< ﬂj
} WL/O‘\O\
fragment shader \
fraprt P
0
varying vec3 color; Lo of —
void main() { lon = ’0
gl_FragColor = vec4 (normalize (color), 1.0); &U W
}

A closer look at GLSL shaders

2015-01-12

GLSL

OpenGL shading language

C-like, w. data types and functions useful for graphics

= vec3, vec4, dvec4, mat4, sampler2D ...
(OpenGL data are floats unless qualified)

= <matrix-vector multiplication>, reflect, refract
Used for both vertex shaders and fragment shaders,
with small differences
WebGL uses GLSL 1.0, which doesn’t have many
features of versions available in OpenGL

https://www.khronos.org/registry/gles/specs/2.0/GLSL

_ES_Specification_1.0.17.pdf

10

Creating a Shader Program

_de’ ;

mfy iy
chlﬂf‘_:. Al o
¢ I

T
e o™
|

Figure 2.1 Shader-compilation command sequence

Source: OpenGL programming guide, 8t edition

2015-01-12

Vertex Shader from
textbook’s hw2d example

#version 130
uniform float uVertexScale;

in vec2 aPosition;
in vec3 aColor;
in vec2 aTexCoord0, aTexCoord1;

out vec3 vColor;
out vec2 vTexCoordO, vTexCoord1;

void main() {
gl_Position = vec4(aPosition.x * uVertexScale, aPosition.y, 0,1);
vColor = aColor;
vTexCoord0 = aTexCoordO;
vTexCoord1 = aTexCoord1;

}

12

Summary of Key GLSL Concepts (1)

= ‘uniform’ type qualifier
= Same for all vertices

tL N 11

= “in”, “out”, “varying” type qualifiers configure
data flow in the pipeline.
= “in” type qualifiers
= Input from previous shader stage
= For vertex shaders, these are per-vertex attributes
= “out” type qualifiers
= QOutputs to next stage
= gl_position is built-in output variable that must be set

before rasterization .

2015-01-12

Summary of Key GLSL Concepts (2)

= “varying” type qualifiers
= Equivalent to “out” for VS, “in” for FS
= Deprecated since GLSL 1.3
= Three.js only supports it at present

= Support for geometry, vector and matrix
arithmetic

= |length, distance, dot, cross, normalize, reflect
= Compiled by the WebGL, at runtime

14

Three.js support

= THREE.ShaderMaterial() lets you set shaders,
uniforms

= Built-in uniforms and attributes. See
http://threejs.org/docs/#Reference/Renderers.W
ebGL/WebGLProgram

= Some vertex attributes
= position, normal, and uv

= Some uniforms
= modelView matrix and cameraPosition

15

2015-01-12

ShaderMaterial Example

var material = new THREE.ShaderMaterial({
uniforms: {
time: { type: "f", value: 1.0 },

resolution: { type: "v2", value: new THREE.Vector2() }

attributes: {
vertexOpacity: { type: 'f', value: [] }

Qertexshader document. getElementById('vertexShader').textContent,
fragmentShader: document.getElementById(’'fragmentShader’).textContent

http://threejs.org/docs/#Reference/Materials/ShaderMaterial

16

Animation (infinite) Loop

// SETUP UPDATE CALL-BACK

function update() {
requestAnimationFrame(update); // next frame
renderer.render(scene, camera);

}

// Do this last
update();

17

2015-01-12

Debugging your program

= Debugging GLSL programs can be challenging.
Keep calm. Many problems are due to strict
typing. E.g., float literals must use decimal point

= Good news: easy to run and see results. No
compilation step. Test code as you write it.
= Browsers provide some tools for JavaScript
debugging, but not for GLSL programs
= Toggle console with, e.g., <F12>
= Reload page with CTRL-R

18

Next class

= Back to 3D Math for Graphics
= Read Chapter 2, Chapter 3 up to 3.5.

19

2015-01-12

