
2015‐03‐23

1

Sampling

Dinesh K. Pai

Textbook Chapter 16

Several slides courtesy of M. Kim

1

Today

 Announcements
 Reminder: Quiz 3 on Friday

 I will post a couple of Quiz 3 practice questions on
Piazza today. Will discuss answers on Wednesday

 Projector Texture mapping tips (need for A4)

 Sampling and Aliasing

2

2015‐03‐23

2

Projector texture mapping tips

 Read Texture Viewport (Textbook 12.3)

 Check out this excellent demo of transformations:
http://www.realtimerendering.com/udacity/transforms.ht
ml

3

Viewport

 Convention in text: pixel centers are integers.
 Warning: OpenGL docs usually assume bottom left

corner of each pixel has integer coordinates.

 Pixels are not points!.

4

2015‐03‐23

3

Viewport matrix

5

 We need a transform that maps the lower left
corner to and upper right corner to

 The appropriate scale and shift can be done using
the viewport matrix:

[0.5,0.5]t

[W  0.5, H  0.5]t

xw

yw

zw

1























W / 2 0 0 (W 1) / 2

0 H / 2 0 (H 1) / 2

0 0 1 / 2 1 / 2
0 0 0 1



















xn

yn

zn

1





















Sampling

6

2015‐03‐23

4

Two views of images

 A continuous image, , is a bivariate
function.
 range is a linear color space.

 A discrete image I[i][j] is a two dimensional array
of color values.

 We associate each pair of integers i, j, with the
continuous image coordinates

7

I(xw , yw)

xw  i and yw  j

Sampling

 The simplest and most obvious method to go
from a continuous to a discrete image is by point
sampling.

 To obtain the value of a pixel i, j, we sample the
continuous image function at a single integer
valued domain location:

 This can results in unwanted artifacts.

8

I[i][j] I (i, j)

2015‐03‐23

5

Aliasing and anti-aliasing

9

Aliasing

Anti-aliasing
(multi-sampling)

Anti-aliasing
(super-sampling)

Aliasing

 Scene made up of black and white triangles:
jaggies at boundaries
 Jaggies will crawl during motion

 If triangles are small enough
then we get random values
or weird patterns.

10

2015‐03‐23

6

Aliasing
 The heart of the problem: too much information

in one pixel

11

Anti-aliasing
 Intuitively: the single sample is a bad value,

we would be better off setting the pixel value
using some kind of average value over some
appropriate region.

 In the above examples, perhaps some gray
value.

12

2015‐03‐23

7

Anti-aliasing

 Mathematically this can be modeled using
Fourier analysis.
 Breaks up the data by “frequencies” and figures out

what to do with the un-representable high
frequencies.

13

Anti-aliasing
 We can also model this as an optimization

problem.

 These approaches lead to:

 where is some function that tells us
how strongly the continuous image value at

should influence the pixel value

14

I[i][j] I(x, y)
 Fi, j (x, y)dxdy

Fi, j (x, y)

[x, y]t i, j

2015‐03‐23

8

Anti-aliasing

 In this setting, the function is called
a filter.
 In other words, the best pixel value is determined by

performing some continuous weighted averaging
near the pixel’s location.

 Effectively, this is like blurring the continuous image
before point sampling it.

15

Fi, j (x, y)

 Switch to tablet

16

2015‐03‐23

9

Box filter

 We often choose the filters to be
something non-optimal, but that can more easily
computed with.

 The simplest such choice is a box filter, where
is zero everywhere except over the 1-

by-1 square center at .

 Calling this square , we arrive
at

17

Fi, j (x, y)

Fi, j (x, y)
x  i, y  j

(i, j) (x, y)

i, j

I[i][j] I (x, y)
i , j
 dxdy

Box filter
 In this case, the desired pixel value is simply the

average of the continuous image over the pixel’s
square domain.

18

2015‐03‐23

10

Over-sampling

 Even that integral is not really easy to compute
 Instead, it is approximated by some sum of the

form:

where k indexes some set of locations
called the sample locations.

 The renderer first produces a “high resolution” color
and z-buffer “image”,
 where we will use the term sample to refer to each of

these high resolution pixels.

19

I[i][j]
1

n
I(xk , yk)

k1

n


(xk , yk)

Over-sampling

 Then, once rasterization is complete, groups of
these samples are averaged together, to create
the final lower resolution image.

20

2015‐03‐23

11

Super-sampling

 If the sample locations for the high resolution
image form a regular, high resolution grid, then
this is called super sampling.

 We can also choose other sampling patterns for
the high resolution “image”,
 Such less regular patterns can help us avoid

systematic errors that can arise when using the sum
to replace the integral.

21

Multi-sampling

 Render to a “high resolution” color and z-buffer

 During the rasterization of each triangle,
“coverage” and z-values are computed at this
sample level.

 But for efficiency, the fragment shader is only
called only once per final resolution pixel.
 This color data is shared between all of the samples

hit by the triangle in a single (final resolution) pixel.

 Once rasterization is complete, groups of these
high resolution samples are averaged together.

22

	L28p
	l28j
	L28p

