
2015‐03‐20

1

Depth and Shadows

Dinesh K. Pai

Textbook Chapter 11

Several slides courtesy of M. Kim

1

Today

 Announcement: A4 will be available later today
 Demo

 Preparation for Quiz 3

 Depth and Shadows

2

2015‐03‐20

2

Quiz 3 Preparation

 In class, Friday March 27 1-1:50. Please be on time.

 Review lecture notes, and assignments.

 Everything covered in lecture could be on the exam

 Everything covered in listed textbook chapters could be
on the exam

 Doing first part of Assignment 4 will be very helpful

3

Quiz 3 Preparation

 Textbook. Read ALL of these, except as noted
 Ch 15 Texture Mapping. Main focus of quiz

 Ch 16 and 17, portions that will be covered Monday/Wednesday

 Interpolation: focus on L20,L21, esp. Bernstein polynomials, but
skim Ch 9

 Projection. Mainly focus on recent lectures on use with projector
textures. Skim Ch 10, 11.3

 Ch 11 Depth

 Ch 12 From Vertex to Pixel. Only Section 12.3.

 Topics from Quiz 1 and 2 will be assumed as
pre-requisites (e.g., it is assumed you now know
coordinate frames and how to transform them)

4

2015‐03‐20

3

Depth Demo

 http://threejs.org/docs/#Reference/Materials/Me
shDepthMaterial

5

Visibility

 In the real world, opaque objects block light.
 We need to model this computationally.
 One idea is to render back to front and use

overwriting
 This will have problem with visibility cycles.

6

2015‐03‐20

4

Visibility

 We could explicitly store everything hit along a ray
and then compute the closest.
 Make sense in a ray tracing setting, where we are

working one pixel per ray at time, but not for OpenGL,
where we are working one triangle at a time.

7

Z-buffer

 We will use z-buffer (or depth buffer)

 Triangles are drawn in any order

 Each pixel in frame buffer stores ‘depth’ value of
closest geometry observed so far.

 When a new triangle tries to set the color of a
pixel, we first compare its depth to the value
stored in the z-buffer.

 Only if the observed point in this triangle is
closer, we overwrite the color and depth values
of this pixel.

8

2015‐03‐20

5

Z-buffer

 This is done per-pixel, so there is no cycle
problem.

 There are optimizations, where z-testing is done
before the fragment shading is done.

9

Other uses of visibility
calculations

 Visibility to a light source is useful for shadows.
 We will talk about shadow mapping later.

 Visibility computation can also be used to speed
up the rendering process.
 If we know that some object is occluded from the

camera, then we don’t have to render the object in
the first place.

 We can use a conservative test.

10

2015‐03‐20

6

Basic mathematical model

 For every point, we define its
coordinates, using the following matrix expression:

 We now also have the value

 Our plan is to use this value to do depth
comparison in our z-buffer.

11

[xn , yn , zn]t

xnwn

ynwn

znwn

wn

xc

yc

zc

wc

sx 0 cx 0

0 sy cy 0

0 0 0 1
0 0 1 0

xe

ye

ze

1

zn
1

zezn

Correct ordering

 Given two points and with eye
coordinates and .

 Suppose that they both are in front of the eye,
i.e., and .

 And suppose that is closer to the eye than ,
that is

 Then ,

meaning

12

p1
p2

[xe
1, ye

1,ze
1,1]t [xe

2 , ye
2, ze

2 ,1]t

ze
1 0 ze

2 0

p1 p2

ze
2 ze

1

p1

p2

ze
2 10

ze
1 5

1

ze
2

1

ze
1

ze
2 ze

1

2015‐03‐20

7

Projective transform

 We can now think of the process of taking points
(given by eye coordinates) to points (given by
normalized device coordinates) as an honest-to-
goodness 3D geometric transformation.

 This kind of transformation is generally neither
linear nor affine, but is something called a 3D
projective transformation.

 Projective transformation preserves co-linearity
and co-planarity of points.

13

Numerics

 points very far from the eye have values very
close to zero

14

ze=-1*[0.01:0.01:10];
zn=-1./ze;
plot(ze(1:100),zn(1:100))

zn

zn
1

ze

2015‐03‐20

8

How to use it

 In Three.js, depth tests are on by default. See
THREE.Material (.depthTest and .depthWrite)

 In OpenGL/WebGL, the z-buffer is turned on
with a call to glEnable(GL_DEPTH_TEST).

 We may also need a call to
glDepthFunc(GL_GREATER), since we are
using a right handed coordinate system where
‘more-negative’ is ‘farther from the eye’.

15

Shadow mapping

 First pass: create “shadow map”, a z-buffer
image from the point of view of the light

 Second pass: check if fragment is visible to the
light using shadow map.

16

2015‐03‐20

9

Shadow mapping

 If a point observed by the eye is not observed
by the light, then there must be some occluding
object in between, and we should draw that
point as if it were in shadow.

17

Shadow mapping
 In a first pass, we render into an FBO the scene

as observed from some camera whose origin
coincides with the position of the point light
source. Let us model this camera transform as:

for appropriate matrices, .

18

xtwt

ytwt

ztwt

wt

 PsMs

xo

yo

zo

1

Ps and M s

2015‐03‐20

10

Shadow mapping

 During this first pass, we render the scene to an
FBO using as the modelview matrix
and as the projection matrix.

 In the FBO we store, not the color of the point,
but rather its “depth value”.

 Due to z-buffering, the data stored at a pixel in
the FBO (depth value), is a monotone function
of . This FBO is then transferred to a texture.

19

M s

Ps

zt

Shadow mapping

 During the second rendering pass, we render our
desired image from the eye’s point of view, but for
each pixel, we check and see if the point we are
observing was also observed by the light, or if it was
blocked by something closer in the light’s view.

 To do this, we use the same computation that was
done with projector texture mapping

 Doing so, in the fragment shader, we can obtain the
varying variables associated with the
point .

20

xt , yt and zt

[xo, yo, zo,1]t

