
2015‐03‐18

1

Texture Coordinates

Dinesh K. Pai

Textbook Chapter 13,15

Some slides courtesy of M. Kim, KAIST

1

Today

 Announcements
 Assignment 4 will be out soon. Due April 2.

 Reminder: Quiz 3 will be on March 27

 I have to attend a meeting downtown on Thursday
morning. My office hour (10-11) will be covered by TA
(Joao) in x432. Knock on the door.

 Texture mapping in WebGL

 Review of projection

 Perspective-correct interpolation

 Projector maps
2

2015‐03‐18

2

Path from vertex to pixel

3

Interpolation of varying variables

 Topic of Chapter 13. Optional for this course,
but please remember that there is a subtle
issue.

 In between the vertex and fragment shader, we
need to interpolate the values of the varying
variables.

 This is surprisingly subtle (called “perspective
correct interpolation”).

4

2015‐03‐18

3

Wrong representation of texture

5

When texture coordinates are linearly
interpolated in window coordinates, an
incorrect image results.

Correct representation of texture

6

2015‐03‐18

4

 Recap of Projection (see Last part of L15)

7

Projector texture mapping
 There are times when we wish to glue our

texture onto our triangles using a projector
model, instead of the affine gluing model.

 For example, we may wish to simulate a slide
projector illuminating some triangles in space.

8

2015‐03‐18

5

Geometry of Projector Textures

9

Projector texture mapping
 The slide projector is modeled using 4 by 4,

modelview and projection matrices,

10

Ms and Ps
xtwt

ytwt

wt

 PsMs

xo

yo

zo

1

2015‐03‐18

6

Projector texture mapping
 With the texture coordinates defined as

 To color a point on a triangle with object
coordinates , we fetch the texture
data stored at location

11

xt
xtwt

wt

 and yt
ytwt

wt

[xo, yo, zo,1]t

[xt , yt]
t

Projector texture mapping

 The three quantities are all
affine functions of . Thus these
quantities will be properly interpolated over a
triangle when implemented as varying variables.

 In the fragment shader, we need to divide by
to obtain the actual texture coordinates.

 When doing projector texture mapping, we do
not need to pass any texture coordinates as
attribute variables to our vertex shader.

12

xtwt , ytwt and wt
(xo, yo, zo)

wt

2015‐03‐18

7

Projector texture mapping

 We simply use the object coordinates already
available to us.

 We do need to pass in, using uniform variables,
the necessary projector matrices.

13

Projector texture mapping
 Projector vertex shader

14

#version 330

uniform mat4 uModelViewMatrix;
uniform mat4 uProjMatrix;

uniform mat4 uSProjMatrix;
uniform mat4 uSModelViewMatrix;

in vec4 aVertex;
out vec4 vTexCoord;

void main(){
vTexCoord = uSProjMatrix * uSModelViewMatrix * aVertex;
gl_Position = uProjMatrix * uModelViewMatrix * aVertex;

}

Vertex shader generates
texture coordinates!
But not normalized

2015‐03‐18

8

Projector texture mapping
 Projector fragment shader

15

#version 330

uniform sampler2D vTexUnit0;

in vec4 aTexCoord;
out vec4 fragColor;

void main(){
vec2 tex2;
tex2.x = vTexCoord.x/vTexCoord.w;
tex2.y = vTexCoord.y/vTexCoord.w;
vec4 texColor0 = texture2D(vTexUnit0, tex2);
fragCoor = texColor0;

}

Projector texture mapping

 Conveniently, OpenGL even gives us a special
call texture2DProj(vTexUnit0, pTexCoord), that
actually does the divide for us.

 Inconveniently, when designing our slide
projector matrix uSProjMatrix, we have to deal
with the fact that the canonical texture image
domain in OpenGL is the unit square, whose
lower left and upper right corners have
coordinates used for the
display window.

16

[0,0]t and [1,1]t

	L26p
	L26p
	L26j
	L26p

