CPSC 314 Computer Graphics

Dinesh K. Pai
Cameras and Projection, contd..

Announcements

- Assignment 2 is now available, due at the end of reading week (Feb 20). Face to face grading will be in the week of Feb 23.
- Assignment 1 grades will be available soon (resolving some discrepancies). Probably this afternoon.
- No class on Monday Feb 9 (Family day statutory holiday)
- My office hour now Thursday morning 10-11am.

Today

- Quiz 1 discussion
- Cameras and Projection, contd.

Quiz 1

- You can download your exams from the link on the course web page (look for "Handback")
- Mark include
- Generous partial credits
- Rounded up $1 / 2$ marks for each question

Details and Pointers

- Q1. Fill in the blank
- Answer key: 12,4,13,9,14,1,10,17
- Q2 most ok, except part 3
- Q3 see L2
- Q4 Orthonormal basis
- Read L5, Textbook p. 15. Try to be precise, esp. if question says "mathematically" or "define"
- Many forgot "normal" part
- Q5 transformations about coord axes
- Most got these right
- Part 4: notice that rotation by 0 about *any* axis = Identity. In general simplify your life by knowing $\cos 0=1, \cos (90)=0$, etc.

Q6

(a)

$$
\tilde{\underline{a}}=\underline{\tilde{w}}\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 3 \\
\frac{\sqrt{2}}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 3 \\
0 & 0 & 1
\end{array}\right) \quad \text { (c) } \quad\left(\begin{array}{c}
0 \\
-3 \sqrt{2} \\
1
\end{array}\right)
$$

(b)

$$
\underline{\underline{b}}=\tilde{\underline{w}}\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{\sqrt{2}}} & 3 \\
-\sqrt{\sqrt{2}} & \frac{1}{\sqrt{2}} & 3 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{3}{\sqrt{2}} \\
\frac{\sqrt{2}}{\sqrt{2}} & \frac{\sqrt{2}}{\sqrt{2}} \\
0 & 0 & 1
\end{array}\right)
$$

Q7 Knowledge Transfer

- (a) Most got it. $\quad M=\left[\begin{array}{l}I \\ \hline \\ 0 \\ i\end{array}\right]$

$$
P_{w}=M C P_{c}
$$

- (b) Instance of transformation w. auxiliary frame
- Discussed in L10,L11 and section 5.2
- Plus very strong hint in the lectures to review this
- Note that tire frame is defined wrt car frame

$$
\begin{aligned}
& P_{c}^{\prime}=T R T^{-1} \rho_{c} \quad \text { where } R=\operatorname{rot}(x, r s) \\
& P_{w}=M C T R T^{-1} \rho_{c}
\end{aligned}
$$

Assignment 2

- Demo

What are the coundinates of the onthographic projectin of Pe outo the imaze plane?

$$
\left.\begin{array}{rl}
P_{e}=\left(\begin{array}{l}
x \\
y \\
2 \\
1
\end{array}\right) & \xrightarrow{N}\left(\begin{array}{l}
x \\
y \\
0 \\
1
\end{array}\right) \\
\text { ie } N & =\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 0
\end{array}\right] \quad \text { as a } 4 \times 4 \\
& \\
&
\end{array}\right] \text { matrix } \quad \text { ar }
$$

vant to convut it to a canomicalbox

$$
T=\left[\begin{array}{c|c}
I & \begin{array}{c}
-\frac{l+\lambda}{2} \\
-\frac{b+t}{2} \\
-\frac{m+f}{2}
\end{array} \\
\hline & 1
\end{array}\right]
$$

Scale the box to have each side $(-1,1)$ Box's height is $t-b$, charge it $t \cdot 1-(-1)=2$

$$
S=\left[\begin{array}{ccc|c}
\frac{2}{n-l} & & & \\
& \frac{2}{t-b} & & \\
& & \frac{2}{x-f} & \\
\hline & & 1
\end{array}\right]
$$

\square frame

So totiol prijechimmatixi is

$$
P=T S=\left[\begin{array}{ccc|c}
\frac{2}{n-l} & & & -\frac{n+l}{\lambda-l} \\
& \frac{2}{t-b} & & -\frac{t+6}{t-6} \\
& & \frac{2}{n-f} & -\frac{n f}{n-f} \\
& & & 1
\end{array}\right]
$$

Note: This on affine transformation any! Next class: need more projective tranfonem

