CPSC 314 Computer Graphics

Dinesh K. Pai
Hierarchies, A1 Spotlight

Announcements

- My office hour will move (after this week) to Thursday morning 10-11am. Reason: I have another repeating Faculty of Science meeting scheduled for Thursday afternoons :
- Quiz 1 will be handed back later this week. Will discussion solutions in class after handback
- Assignment 2 available soon (probably by tomorrow)

Today

- Assignment 1 Spotlight
- Wrap up of transformations

A1 Spotlight

- Purpose: to share some interesting student work for Part 2 ("Creative License")
- This is not meant to represent a "best of" .. i.e., this is not a competition. There are no extra marks for this. It's just a sample of the great work submitted.
- If your assignment was picked it does not necessarily mean that it wasn't as interesting. We only have a limited amount of time.

Dynamic Deformation with

 DyRT [James \& Pai 02]
Dynamic

physically-based modal deformation Response
to bone-based animation
Textures
precomputed, sampled, and rendered almost entirely on graphics hardware

DyRT Vertex Program: Displacement Example

DyRT movie

Laparoscopic example

[James \& Pai 02]

Transformations, wrap up

- Homogenous coordinates and transformations are fundamental to computer graphics.
- Scene graphs and hierarchies (brief intro)
- Three.js support for hierarchies
- Assignment 2

Three.js support

- Reviewed documentation at http://threejs.org/ especially http://threejs.org/docs/\#Reference/Core/Object3 D
- Object3D is the basic scene graph node

A closer look at "lookAt"

$$
\text { input: } \tilde{p}, \tilde{\imath}, \vec{u}
$$

$$
\begin{aligned}
& \vec{z}=\operatorname{nomarije}\left(\begin{array}{ll}
u & -\tilde{q}
\end{array}\right) \\
& \vec{x}=\operatorname{normang}_{\rightarrow \rightarrow}(\vec{u} \times \vec{z}) \\
& \vec{b}=\vec{z} \times \vec{x} \\
& {\left[\vec{x}|\vec{b}| \vec{z}\left[\begin{array}{l}
\tilde{p}
\end{array}\right] \quad \text { in world } \begin{array}{c}
\text { words } \\
\text { col }
\end{array}\right.}
\end{aligned}
$$

A closer look at "lookAt"

- Book description in 5.2.3 has a bug, fixed in online Errata (make this and other corrections in your textbook copy)
- $\mathrm{z}=$ normalize $(\mathrm{p}-\mathrm{q})$
$x=$ normalize $(u \times z)$ $y=(z \times x)$
- The book's "lookAt" is the inverse of Three.js's camera.lookAt() method
- The author is aware of these issues, will fix it in future editions

