
CPSC 314
Assignment 4: Introduction to Texture Mapping

Due 4PM, April 2, 2015

1 Introduction

The goal of this assignment is to get a first exposure to the huge area of texture mapping.
You will start with a JavaScript template provided by the instructor. Built in Three.js
materials, such as MeshBasicMaterial, allow you to quickly and easily apply textures. This
assignment includes a simple scene with three objects. The main challenge is to understand
how texture mapping is implemented in shaders, and to experiment with different uses of
textures. The figure shows a sample result for Part 1 of the assignment.

2 Work to be done (100 pts)

Before begining your work, please take a look at the template, which contains hints in the
comments marked with “TODO”. Also take note of the images sub-directory. We have
provided a number of sample images that you can use, but feel free to use your own. The
textbook has detailed explanations of all texturing schemes you are asked to implement, in
Chapter 15.

1



CPSC 314 Assignment 4 Due April 2, 2015

Part 1 : Exercises (70 points)

1. 20 pts Basic Texturing of an Octahedron.

In the most basic texturing scheme, the texture image is used to look up the final color
of the object. UV texture coordinates are associated with each vertex by the modeler.
The interpolated values of these UV coordinates are passed to the fragment shader,
which simply sets that fragment color to that in the texture image. You may use the
standard Three.js library ImageUtils to load the texture, but you should implement
your own custom shaders to look up the fragment color in the texture map. You may
use the gravel texture included in the images directory.

2. 20 pts Environment Cube Mapping on a sphere

As discussed in class and in the textbook, cube mapping simulates a perfectly reflective
object that mirrors the environment around it. In this part, you will apply a basic
static cube map (that is, one that reflects a static scene, but not other objects in the
scene) to a sphere. Three.js includes functions in ImageUtils to help load a texture
cube that you may use. You do not have to write new shaders. The images directory
contains two directories: cubemap debug, whose images have discontinuities at the
edges, so that you can see more easily which images are reflected; and cubemap real,
whose images constitute a proper environment cube map.

3. 30 pts Projected Textures on a sphere

In this part you will project an image on the object, as if a slideshow projector was
displaying a picture on it. Using Three.js you may pass the projector data to the
vertex shader as uniform variables. Texture coordinates are computed in the vertex
shader, and passed to the fragment shader. This has been discussed extensively in
class. See Chapter 15 of the textbook for implementation details and be careful about
your projection matrices.

Hint: The textbook describes the projector as essentially a second camera in the
scene. However, do not use the Three.js camera class to get your perspective and view
matrices (Three.js does not maintain the matrices for cameras not used to render the
scene properly). Its much easier to compute the view and projection matrices with
Matrix4’s lookAt and makePerspective functions. Beware: lookAt only computes
the rotation part; you will have to add the translation part of the view matrix.

Part 2 : Creative License (30 pts)

For this part we want to see what you can do. Your ideas should use at least one new shader,
and should be of a similar complexity to the previous tasks. You should apply the texture to
a more complicated object, such as the Armadillo model from previous assignments. If you
have any doubts, make sure to OK it with a prof or TA. Some possible suggestions might
be:

• Create dynamic cube maps to reflect other scene objects. This is easy with Three.js

Page 2 of 3



CPSC 314 Assignment 4 Due April 2, 2015

• Implement a normal mapping scheme to create more complex looking geometry.

• See http://threejs.org/examples/ and http://www.shadertoy.com/ for more inspira-
tion.

Bonus marks may be given at the discretion of the marker for particularly noteworthy ex-
plorations.

2.1 Hand-in Instructions

You do not have to hand in any printed code. Create a README.txt file that includes
your name, student number, and login ID, and any information you would like to pass
on to the marker. Create a folder called “a4” under your “cs314” directory. Within this
directory have two subdirectories named “part1,” and “part2”, and put all the source files,
your makefile, and your README.txt file for each part in the respective folder. Do not use
further sub-directories. The assignment should be handed in with the exact command:

handin cs314 a4

Page 3 of 3


