CPSC 314
 Computer Graphics

Dinesh K. Pai

Sequences of Transformations

Announcements

- Assignment 1 due today. Small deadline extension: due at 11:59pm
- Motivation Movie. An early example of what vertex shaders can do

C^{3} Homework: Basis and Transformation

- What are the coordinates of point P in frame A, B , and C ?
- Which frame is orthonormal?
- How to transform a point from frame C to frame B?

Sequences of Transformations
$\$$ Rigid Transformation Any ambination of notations e translations

$$
\left[\begin{array}{c|c}
R & t \\
\hline 000 & 1
\end{array}\right]
$$

* Most comma/useful trans finmation
\oint Change of reference frame

Express each vector or point in au, ir frame \mathfrak{b}

$$
\operatorname{\varepsilon g} \cdot \quad \vec{a}_{1}=\underline{b} \vec{A}_{1}
$$

F this is how y ar specify a new frame
So

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{a} \\
& \underline{\underline{a}}=\left(\begin{array}{llll}
(\vec{a} & \vec{a}_{2} & \overrightarrow{a_{3}} & \tilde{a}_{0}
\end{array}\right)=\underline{b}\left(\overrightarrow{A_{1}}, \bar{A}_{2}\right. \\
& \bar{A}_{3}\left.\bar{A}_{2}\right) \\
& \left\lvert\, \begin{array}{ll}
n & \tilde{a} \\
\underline{a} & \vec{A} \\
\hline
\end{array}\right.
\end{aligned}
$$

S. both condernates should refer 18 the same physical print

$$
\tilde{p}=\underline{\tilde{b}} \bar{p}_{b}=\underline{\tilde{a}} \bar{p}_{a}=\underline{\tilde{b}} \overline{\underline{A}} \bar{p}_{a}
$$

$$
\frac{\bar{P}_{b}}{}=\frac{\bar{A} \bar{P}_{a}}{\bar{P}_{a}}=(\bar{A})^{-1} \bar{P}_{b} \quad \begin{gathered}
\text { Invucue } \\
\text { matrix }
\end{gathered}
$$

§ Two difavent views of 4×4 matrices
(1) A transfinmation of points/data
(2) A change of refence frame

vilus (2)

This object counde in fname I as the -riginal im \tilde{b}

