CPSC 314 Computer Graphics

Dinesh K. Pai

Homogeneous Coordinates and their transformations

Announcements

- Assignment 1: sign up for grading. Link posted on Piazza http://doodle.com/dx74v4k87mtgrsdp
- Lateness policy: up to three days in the entire term details will be posted on course web page Ensure you have submitted before your grading time slot
- Assignment 2 will be out this weekend
§ Translations of points

$$
\begin{aligned}
& \tilde{p} \underset{\substack{\text { trastun } \\
t_{0}}}{\Rightarrow} \tilde{p}+\vec{t} \\
& \tilde{q}=\underset{\text { equal }}{=} \hat{p}+\vec{t}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{c}
p_{1}+t_{1} \\
p_{2}+t_{2} \\
p_{3}+t_{3} \\
1
\end{array}\right) \\
& =\bar{q}
\end{aligned}
$$

So a translation is a linear transform in homogeneous condinates!! So a 4×4 malvix.

Already know that notations, scaling are also 4×4 matrices.

So ale common manipulations are 4×4 matrices This is shy these are in the DNA of opentil.

Put it all Lgothu

$$
\bar{T} \bar{L}=\left[\frac{I}{}|t|\left[\frac{l_{3 \times 3} \mid}{11}\right]=\left[\frac{l_{3 \times 3} \mid t}{\square} 1\right]\right.
$$

This is the geneal for of any affine trans fin math.

C³Homework:
 Basis and Transformation

- What are the coordinates of point P in frame A, B, and C ?
- Which frame is orthonormal?
- How to transform a point from frame C to frame B ?

