
CPSC 314
Computer Graphics

Dinesh K. Pai

Nuts and bolts of
OpenGL programming, Part 2

Vector Spaces
1

Announcements
 Midterm exams now scheduled:
 First midterm Friday Feb 7, in class
 Second midterm Friday March 21, in class

 Assignment 1
 Please use our README in A1.zip, not textbook’s.
 Mac issues still persist… please be patient. Setting

up the environment is main work of this assignment
 Today:
 Wrap up last class on practical aspects of

programming with OpenGL and vertex shaders
 Continue with graphics math review

2

C3 Survey

 What is your computing environment
a) Linux, with lab machines
b) Linux, personal
c) Mac OSX
d) Windows
e) Something else

3

C3 Survey

 How far along are you with Assignment 1
a) Not started
b) Can run template code
c) Finished at least one required part
d) Finished all required parts (1,2,3)
e) Finished everything

4

Recap

5

What you need to get started..

 GLUT and freeGLUT
 GLEW
 GLM
 GLSL

6

GLalphabet soup

 GLUT and freeGLUT
 GLEW
 GLM
 GLSL
 OpenGL shading language
 C-like, w. data types and functions useful for graphics

 vec3, vec4, dvec4, mat4, sampler2D …
(OpenGL data are floats unless qualified)

 <matrix-vector multiplication>, smoothstep, reflect,…
 Used for both vertex shaders and fragment shaders,

with small differences 7

Pattern of an OpenGL program
int main(int argc, char **argv) {

initGlutState(argc,argv);
glewInit(); // load the OpenGL extensions

initGLState();
initShaders();
initBuffers();
…
glutMainLoop();
return 0;

}

8

Call back function “display"

 Registered with GLUT using
glutDisplayFunc(display)

static void display(void) {
glUseProgram(h_program)
glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT);
drawObj();
glutSwapBuffers();

}

9

Vertex Shader from
textbook’s hw2d example

#version 130

uniform float uVertexScale;

in vec2 aPosition;
in vec3 aColor;
in vec2 aTexCoord0, aTexCoord1;

out vec3 vColor;
out vec2 vTexCoord0, vTexCoord1;

void main() {
gl_Position = vec4(aPosition.x * uVertexScale, aPosition.y, 0,1);
vColor = aColor;
vTexCoord0 = aTexCoord0;
vTexCoord1 = aTexCoord1;

} 10

C3: GLSL

 What is the mandatory output in a vertex
shader?
a) The clip coordinates (gl_Position)
b) The color of each vertex (e.g. fragColor in the

textbook example)
c) The texture coordinates
d) All of the above

11

OpenGL as a client-server system
 Server is a drawing machine, with state

 includes data “Objects” and “Context”
 Context is all the state that can be drawn or manipulated

by the client
 OpenGL API provides functions for client to change or

read the state of the server
 Create Objects on the server
 Bind data buffers to targets in the Context
 glDraw* initiates drawing

 Important things to create on server
 Data: Vertex Buffer Objects (VBOs), Texture Objects, …
 Programs: Shader programs

12

OpenGL pipeline

Source: OpenGL programming guide, 8th edition 13

Summary of Key GLSL Concepts (1)

 ‘uniform’ type qualifier
 Same for all vertices

 “in” and “out” type qualifiers configure data flow
in the pipeline

 “in” type qualifiers
 Input from previous shader stage
 For vertex shaders, these are per-vertex attributes

 “out” type qualifiers
 Outputs to next stage
 gl_position is built-in output variable that must be set

before rasterization 14

Summary of Key GLSL Concepts (2)

 ‘layout’ qualifier
 specify the attribute index explicitly
 Note: each “attribute” is a vec4. So we can store up

to 4 floats per attribute.
 Support for vector and matrix arithmetic
 Compiled by the OpenGL application, at runtime

15

Back to theory
Switch to tablet

16

Next class

 Representation of points AND vectors
 Read Chapter 3 up to 3.5.

17

	L5 a
	L5. Vector Spaces

