
2014‐03‐31

1

Coverage, compositing and
the alpha channel
+ reconstruction

Dinesh K. Pai

Textbook Chapter 16,17

Several slides courtesy of M. Kim

1

Compositing?

 Example of demo reel
http://vimeo.com/72617082

2

2014‐03‐31

2

Recap:
Aliasing and anti-aliasing

3

Aliasing

Anti-aliasing
(multi-sampling)

Anti-aliasing
(super-sampling)

C3 Review: Sampling

 What causes aliasing?
a) Too much detail per pixel

b) Too many pixels per screen area

c) Incorrectly loaded texture

d) All of the above

e) None of the above

2014‐03‐31

3

C3 Review: Sampling

 How to avoid aliasing?
a) Render to a display of higher resolution

b) Calculate some average value of several texels to
display for each pixel

c) Change to a texture of higher resolution

d) All of the above

e) None of the above

6

2014‐03‐31

4

Overview of Compositing

 Generalize idea of anti-aliasing to representing
the “coverage” of each pixel by an object

 Essential for multi-pass rendering, requiring
combination of images

 Historically, related to “matte”s in film, now done
using the “alpha” channel in RGBA color images

 Importance increasing due to increasing
availability of digital imagery

 Widely used: Visual Effects, “Sprites” in games,
etc. Natively supported in most OS’s for GUI

7

Image compositing
 Given two discrete images, a foreground, ,

and background, , that we want to combine
into one image .

 Simple: in composite, use foreground pixels
where they are defined. Else use background
pixels.

 This will give us a jagged boundary.

 Real image would have “boundary” pixels with
blended colors.

 But this requires using “sub-pixel” information.

8

If

Ib

Ic

2014‐03‐31

5

Image compositing

9

Alpha blending

 Associate with each pixel in each image layer, a
value, , that describes the overall opacity
or coverage of the image layer at that pixel.
 An alpha value of 1 represents a fully

opaque/occupied pixel, while a value of 0 represents
a fully transparent/empty one.

 A fractional value represents a partially transparent
(partially occupied) pixel.

 Alpha will be used during compositing.

10

[i][j]

2014‐03‐31

6

Alpha definition

 More specifically, let be a continuous
image, and let be a binary valued
coverage function over the continuous
domain, with a value of 1 at any point where the
image is “occupied” and 0 where it is not.

 Let us store in our discrete image the values:

11

I(x, y)
C(x, y) (x, y)

I[i][j] I (x, y)
i , j
 C(x, y)dxdy

[i][j] C(x, y)dxdy
i , j

Over operation

 To compose , we compute
the composite image colors, , using

That is, the amount of observed background
color at a pixel is proportional to the
transparency of the foreground layer at that
pixel.

 Likewise, alpha for the composite image can be
computed as:

12

If [i][j] over Ib[i][j]
Ic[i][j]

Ic[i][j] If [i][j] + Ib[i][j] (1 - f [i][j])

 c[i][j] f [i][j] + b[i][j] (1 - f [i][j])

2014‐03‐31

7

Over operation
 If background is opaque, so the composite pixel

is opaque.

 But we can model more general case as part of
blending multiple layers.

13

Over properties

 This provides a reasonable approximation to the
correctly rendered image.

 One can easily verify that the over operation is
associative but not commutative. That is,

14

Ia over (Ib over Ic) (Ia over Ib) over Ic

Ia over Ib Ib over Ia

2014‐03‐31

8

RECONSTRUCTION
(DISCRETE CONTINUOUS)

Chapter 17

15

Reconstruction

 Given a discrete image I[i][j], how do we create
a continuous image I(x,y)?

 Is central to resize images and to texture
mapping.
 How to get a texture colors that fall in between texels.

 This process is called reconstruction.

 We already know the key idea, from L24-L26:
Interpolation! So we will go over this quickly.

16

2014‐03‐31

9

Constant reconstruction
 The resulting continuous image is made up of

little squares of constant color.

 Each pixel has an influence region of 1-by-1

17

Linear and Bilinear interpolation

We already know how to interpolate in 1D

 Linear (1D) Bilinear (2D):

18

2014‐03‐31

10

Bilinear reconstruction
 Can create a smoother looking reconstruction using

bilinear interpolation.
 Bilinear interpolation is obtained by applying linear

interpolation in both the horizontal and vertical
directions.

19

color bilinearReconstruction(float x, float y, color
image[][]){

int intx = (int) x;
int inty = (int) y;
float fracx = x - intx;
float fracy = y - inty;

color colorx1 = (1-fracx) * image[intx][inty] +
(fracx) * image[intx+1][inty];

color colorx2 = (1-fracx) * image[intx][inty+1] +
(fracx) * image[intx+1][inty+1];

color colorxy = (1-fracy) * colorx1 +
(fracy) * colorx2;

return(colorxy);

Bilinear properties

 At integer coordinates, we have I(x,y)=I[i][j]; the
reconstructed continuous image I agrees with
the discrete image I. => Interpolation

 In between integer coordinates, the color values
are blended continuously.

 Each pixel influences, to a varying degree, each
point within a 2-by-2 square region of the
continuous image. => Local Support

 The horizontal/vertical ordering is irrelevant.

 Color over a square is bilinear function of (x,y).
20

2014‐03‐31

11

Bilinear basis function
 Just as in L25,L26, we can think of interpolation as

weighted combination of basis (or blending)
functions B

 In 1D, we can define a univariate hat function

21

Hi (x)

Hi (x) x i 1 for i 1 x i

 x i 1 for i x i 1

 0 e lse

 In 2D (bilinear function), let be a
bivariate function:

 This is called a tent function

 In constant reconstruction, is a box
function that is zero everywhere except for the unit
square surrounding the coordinates (i,j), where it
has constant value 1.

Bilinear basis function

22

Ti, j (x, y)

Ti, j (x, y) Hi (x)H j (y).

Bi, j (x, y)

