
2014‐03‐24

1

Depth

Dinesh K. Pai

Textbook Chapter 11

Several slides courtesy of M. Kim

1

Announcements

 Midterm 2 results will be discussed next class

 Assignment 4 grading will be Friday-Wednesday

 Assignment 3 showcase

2

2014‐03‐24

2

Visibility

 In the real world, opaque objects block light.
 We need to model this computationally.
 One idea is to render back to front and use

overwriting
 This will have problem with visibility cycles.

3

Visibility

 We could explicitly store everything hit along a ray
and then compute the closest.
 Make sense in a ray tracing setting, where we are

working one pixel per ray at time, but not for OpenGL,
where we are working one triangle at a time.

4

2014‐03‐24

3

Z-buffer

 We will use z-buffer (or depth buffer)

 Triangles are drawn in any order

 Each pixel in frame buffer stores ‘depth’ value of
closest geometry observed so far.

 When a new triangle tries to set the color of a
pixel, we first compare its depth to the value
stored in the z-buffer.

 Only if the observed point in this triangle is
closer, we overwrite the color and depth values
of this pixel.

5

Z-buffer

 This is done per-pixel, so there is no cycle
problem.

 There are optimizations, where z-testing is done
before the fragment shading is done.

6

2014‐03‐24

4

Other uses of visibility
calculations

 Visibility to a light source is useful for shadows.
 We will talk about shadow mapping later.

 Visibility computation can also be used to speed
up the rendering process.
 If we know that some object is occluded from the

camera, then we don’t have to render the object in
the first place.

 We can use a conservative test.

7

Basic mathematical model

 For every point, we define its
coordinates, using the following matrix expression:

 We now also have the value

 Our plan is to use this value to do depth
comparison in our z-buffer.

8

[xn , yn , zn]t

xnwn

ynwn

znwn

wn























xc

yc

zc

wc























sx 0 cx 0

0 sy cy 0

0 0 0 1
0 0 1 0





















xe

ye

ze

1





















zn 
1

zezn

2014‐03‐24

5

Correct ordering

 Given two points and with eye
coordinates and .

 Suppose that they both are in front of the eye,
i.e., and .

 And suppose that is closer to the eye than ,
that is

 Then ,

meaning

9

p1
p2

[xe
1, ye

1,ze
1,1]t [xe

2 , ye
2, ze

2 ,1]t

ze
1  0 ze

2  0

p1 p2

ze
2  ze

1

p1

p2

ze
2  10

ze
1  5


1

ze
2  

1

ze
1

ze
2  ze

1

Projective transform

 We can now think of the process of taking points
(given by eye coordinates) to points (given by
normalized device coordinates) as an honest-to-
goodness 3D geometric transformation.

 This kind of transformation is generally neither
linear nor affine, but is something called a 3D
projective transformation.

 Projective transformation preserves co-linearity
and co-planarity of points.

10

2014‐03‐24

6

Co-linearity of points

 If three or more points are on a single line, the
transformed points will also be on some single
line.

 Three points

11

xi  [xi , yi , zi ,1] for i  1,2,3

x2  x1 : y2  y1 : z2  z1  x3  x1 : y3  y1 : z3  z1

p2  p1   p1  p3   0

Scene in normalized device coordinates (NDC)

Co-planarity of points

14

 Note that distances are not preserved by a projective
transform.

 Evenly spaced pixel on the film do not correspond to
evenly spaced points on the geometry in eye space.

 Meanwhile, such evenly spaced pixels correspond with
evenly spaced points in normalized device
coordinates.

zn

2014‐03‐24

7

Numerics

 points very far from the eye have values very
close to zero

18

ze=-1*[0.01:0.01:10];
zn=-1./ze;
plot(ze(1:100),zn(1:100))

zn

zn 
1

ze

How to use it

 In OpenGL, the z-buffer is turned on with a call
to glEnable(GL_DEPTH_TEST).

 We may also need a call to
glDepthFunc(GL_GREATER), since we are
using a right handed coordinate system where
‘more-negative’ is ‘farther from the eye’.

 In practice, you may see other conventions (for
how to interpret , some of the signs of the
matrix, and the handedness of the ultimate z-
test.

19

n and f

2014‐03‐24

8

Glm: Perspective
Eye coords Clip coords

20

1

 tan

2







0 0 0

0
1

tan

2







0 0

0 0
f  n

f  n


2 fn

f  n

0 0 1 0



































21

	L28p
	L28j
	L28p

