Depth

Dinesh K. Pai

Textbook Chapter 11

Several slides courtesy of M. Kim

Announcements

- Midterm 2 results will be discussed next class
- Assignment 4 grading will be Friday-Wednesday
- Assignment 3 showcase

Visibility

- In the real world, opaque objects block light.
- We need to model this computationally.
- One idea is to render back to front and use overwriting
- This will have problem with visibility cycles.

Visibility

Scene goometry Film plane at $z=-1$

- We could explicitly store everything hit along a ray and then compute the closest.
- Make sense in a ray tracing setting, where we are working one pixel per ray at time, but not for OpenGL, where we are working one triangle at a time.

Z-buffer

- We will use z-buffer (or depth buffer)
- Triangles are drawn in any order
- Each pixel in frame buffer stores 'depth' value of closest geometry observed so far.
- When a new triangle tries to set the color of a pixel, we first compare its depth to the value stored in the z-buffer.
- Only if the observed point in this triangle is closer, we overwrite the color and depth values of this pixel.

Z-buffer

- This is done per-pixel, so there is no cycle problem.
- There are optimizations, where z-testing is done before the fragment shading is done.

Other uses of visibility calculations

- Visibility to a light source is useful for shadows.
- We will talk about shadow mapping later.
- Visibility computation can also be used to speed up the rendering process.
- If we know that some object is occluded from the camera, then we don't have to render the object in the first place.
- We can use a conservative test.

Basic mathematical model

- For every point, we define its $\left[x_{n}, y_{n}, z_{n}\right]^{t}$ coordinates, using the following matrix expression:

$$
\left[\begin{array}{c}
x_{n} w_{n} \\
y_{n} w_{n} \\
z_{n} w_{n} \\
w_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right]=\left[\begin{array}{cccc}
s_{x} & 0 & -c_{x} & 0 \\
0 & s_{y} & -c_{y} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{e} \\
y_{e} \\
z_{e} \\
1
\end{array}\right]
$$

- We now also have the value $z_{n}=\frac{-1}{z^{\prime}}$
- Our plan is to use this Z_{n} value to do depth comparison in our z-buffer.

Correct ordering

- Given two points \tilde{p}^{1} and \tilde{p}^{2} with eye coordinates $\left[x_{e}^{1}, y_{e}^{1}, z_{e}^{1}, 1\right]^{t}$ and $\left[x_{e}^{2}, y_{e}^{2}, z_{e}^{2}, 1\right]^{t}$.
- Suppose that they both are in front of the eye, i.e., $z_{e}^{1}<0$ and $z_{e}^{2}<0$.
- And suppose that \tilde{p}^{1} is closer to the eye than \tilde{p}^{2}, that is $z_{e}^{2}<z_{e}^{1}$
- Then $-\frac{1}{\mathrm{z}_{e}^{2}}<-\frac{1}{\mathrm{z}_{e}^{1}}$,
meaning

$$
z_{\hat{\eta}}^{2}<z_{n}^{1}
$$

Projective transform

- We can now think of the process of taking points (given by eye coordinates) to points (given by normalized device coordinates) as an honest-togoodness 3D geometric transformation.
- This kind of transformation is generally neither linear nor affine, but is something called a 3D projective transformation.
- Projective transformation preserves co-linearity and co-planarity of points.

Co-linearity of points

- If three or more points are on a single line, the line.

- Three points $\mathbf{x}_{i}=\left[x_{i}, y_{i}, z_{i}, 1\right]$ for $i=1,2,3$
$x_{2}-x_{1}: y_{2}-y_{1}: z_{2}-z_{1}=x_{3}-x_{1}: y_{3}-y_{1}: z_{3}-z_{1}$
$\left|\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right) \times\left(\mathbf{p}_{1}-\mathbf{p}_{3}\right)\right|=0$

Co-planarity of points

- Note that distances are not preserved by a projective transform.
- Evenly spaced pixel on the film do not correspond to evenly spaced points on the geometry in eye space.
- Meanwhile, such evenly spaced pixels correspond with evenly spaced points in normalized device coordinates.

Numerics

- points very far from the eye have z_{n} values very close to zero
$z_{n}=\frac{-1}{z_{e}}$
ze=-1*[0.01:0.01:10];
zn=-1./ze;
plot(ze(1:100),zn(1:100))

How to use it

- In OpenGL, the z-buffer is turned on with a call to glEnable(GL_DEPTH_TEST).
- We may also need a call to glDepthFunc(GL_GREATER), since we are using a right handed coordinate system where 'more-negative' is 'farther from the eye'.
- In practice, you may see other conventions (for how to interpret n and f, some of the signs of the matrix, and the handedness of the ultimate ztest.

Solution: Use near 1 fou planes in projection

$$
\left[\begin{array}{cc|c}
1 & & \\
& 1 & \\
& 0 & 1 \\
\hline & -1 & 0
\end{array}\right] \stackrel{\text { genadj }}{\Longrightarrow} P=\left[\begin{array}{lll|l}
1 & & & \\
& 1 & & \\
& & \alpha & \beta \\
\hline & \cdot & -1 & \cdot
\end{array}\right]
$$

Apply $h_{0}=\left(\begin{array}{c}0 \\ 0 \\ z_{e} \\ 1\end{array}\right) s a_{y}$

$$
S_{0} P_{q}=\left(\begin{array}{l}
0 \\
0 \\
\alpha z_{c}+\beta \\
-z_{c}
\end{array}\right)=\left(\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right)
$$

We can pick α \& β to male $x \rightarrow+1, f \rightarrow-1$

$$
\text { i.e. } \left.\begin{array}{rl}
\alpha n+\beta=-n \\
\alpha f+\beta & =f
\end{array}\right] \begin{array}{r}
\text { Ram: } \begin{array}{r}
\frac{z_{c}}{w_{c}}
\end{array}=+1, \text { ie } z_{c}=-n \\
\frac{z_{c}}{c}=-1, \text { ie } z_{c}=-w_{c}=f \\
w_{c}
\end{array}
$$

Solve:

$$
\begin{aligned}
\alpha(f-n) & =f+n \\
\alpha & =\frac{f+n}{f-n}
\end{aligned}
$$

Plug into $2^{2 d} \varepsilon_{r}$

$$
\beta=f-\alpha f=f-\left(\frac{f+n}{f \cdot n}\right)^{f}
$$

$$
=f^{2}-f_{n}-\mu^{n}-f_{n}=\frac{-2 f_{n}}{f-n}
$$

Glm: Perspective

Eye coords \rightarrow Clip coords

$$
\left[\begin{array}{cccc}
\frac{1}{\alpha \tan \left(\frac{\theta}{2}\right)} & 0 & 0 & 0 \\
0 & \frac{1}{\tan \left(\frac{\theta}{2}\right)} & 0 & 0 \\
0 & 0 & \frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right]
$$

