Projection and Rasterization Redux Dinesh K. Pai

Partly from
Textbook Chapters 10 and 12

Midterm 2 update

- Textbook. Read ALL of these, except as noted
- Ch 14 Materials (shading and lighting)
- Ch 15 Texture Mapping
- Ch 3.6 (transformation of normals)
- Ch 9 Interpolation. Skip 9.2 and 9.3
- Ch 10 Projection
- Ch 12 From Vertex to Pixel
*-Ch 11: We'll cover this AFTER midterm, so Wed. will be review

C ${ }^{3}$ Review: Interpolation

- How many control points are there for a segment of a Bezier curve of degree 3?
a) 1
b) 2
c) 3
d) 4
e) None of the above

C ${ }^{3}$ Review: Interpolation

- If you use 4 points $\mathrm{C} 0=(0,0,0), \mathrm{C} 1=(1,0,0)$, $\mathrm{C} 2=(0,1,0), \mathrm{C} 3=(0,0,1)$ as the control points for a piece of Bezier curve, what is its tangent direction at C 0 ?
a) $(1,0,0)$
D) $(0,1,0)$
c) $(0,0,1)$
d) None of the above

Projection
§Recap basic pinhole projection

Basic Projection Matrix

$$
P_{b}=\left[\begin{array}{lll|l}
1 & & & 0 \\
& 1 & 1 & 0 \\
& -1 & 0
\end{array}\right]
$$

Chat $\left(\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right) \xrightarrow{P_{D}}\left(\begin{array}{c}x \\ y \\ z \\ -z\end{array}\right) \xrightarrow[\text { "navmeisi" }]{\text { Homossini }}\left(\begin{array}{c}-x / z \\ -y / z \\ -1 \\ 1\end{array}\right)$
§ Ow initial conception of 4×4 matrices \& homogeneous cords. was a was to combine points $\left(\begin{array}{l}\dot{0} \\ \vdots \\ 1\end{array}\right)$ and vectors $\left(\begin{array}{l}0 \\ i \\ 0\end{array}\right)$

$$
\left[\begin{array}{lll}
\text { Wore: } & \text { bork } \\
\text { often } & \text { chits }
\end{array}\left(\begin{array}{l}
x_{w} \\
y_{w} \\
z_{w} w \\
w
\end{array}\right)\right.
$$

What we have really dons is to model 3D $\left(\mathbb{R}^{3}\right)$ as a Projective space $\left(\mathbb{P}^{3}\right)$

A projective tranifurm is amy mon-singular 4×4 matrix.

Let's make a better projection

Non-singular!

$$
\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right) \xrightarrow{P_{p}}\left(\begin{array}{c}
x \\
y \\
1 \\
-z
\end{array}\right) \xrightarrow{H}\left(\begin{array}{c}
-x / z \\
-y / z \\
-1 / z \\
1
\end{array}\right)
$$

$\operatorname{vecton}\left(\begin{array}{c}0 \\ y \\ -1 \\ 1\end{array}\right)-\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{c}0 \\ y \\ -1 \\ 0\end{array}\right) \rightarrow\left(\begin{array}{l}0 \\ y \\ 0 \\ 1\end{array}\right)$ a point!

In a projective space, $\left(\begin{array}{l}y \\ y \\ 0 \\ 0\end{array}\right)$ is a point at infint in the direction of that is vector.

Simplifies a lot of things.
es. any two limes intersect atafoint, pulas at io

What this lac to 3D space:

What glum: Prospective (

) does.
Nramalizel Eunice comorin

Pipilene

modil cornd
0 Model
x_{w} worldurds

Vle lyecords
Pr Projection

v-compenat is non-triva

