Interpolation and Approximation of functions

Dinesh K. Pai

Partly from
Textbook Chapter 9

Today

- Midterm 2 preparation
- Interpolation and approximation

Midterm 2 Preparation

- In class, F 1-1:50. Please be on time.
- Review lecture notes, and assignments.
- Everything covered in lecture could be on the exam
- Everything covered in listed textbook chapters could be on the exam
- I will provide some practice problems on Monday
- Office hours next week:
- W 3-4 (usual time)
- R 3:30-4:30 (extra office hour)

Midterm 2 Preparation

- Textbook. Read ALL of these, except as noted
- Ch 14 Materials (shading and lighting)
- Ch 15 Texture Mapping
- Ch 3.6 (transformation of normals)
- Ch 9 Interpolation
- Ch 10 (note: only basic projection was covered in midterm 1)
- Ch 11: skip 11.2.1. We'll cover this next week
- Ch 12 From Vertex to Pixel
- Topics from Midterm 1 will be assumed as prerequisites (e.g., it is assumed you now know coordinate frames and how to transform them)

C^{3} Review: Interpolation

- Given 2 points $\mathrm{P} 1=(1,5), \mathrm{P} 2=(5,3)$, what is the corresponding y value of an interpolated point with $x=3$? Use linear interpolation.
a) 3
(b) 4
c) 5
d) Not well defined

C 3 Review: Constant Interpolation

- Given 2 points $\mathrm{P} 1=(1,5), \mathrm{P} 2=(5,3)$, what is the corresponding y value of an interpolated point with $x=3$? Use constant interpolation.
a) 3
b) 4
c) 5
c) Not well defined

Intupolation
Last class:
Limear inteupolation
Kay conceptual step

$$
c(t)=c_{0} \underbrace{(1-t)}_{\substack{\text { Blending furcions } \\ \\ \\ \\ \\ \text { polynimials }}}+c_{1} t
$$

Today: Gennalige this idea.
(1) C can be of high dimension.

If $\bar{c}=\left(\begin{array}{l}c_{x} \\ c_{y} \\ c_{z}\end{array}\right) \quad \bar{c}_{0}=\left(\begin{array}{l}c_{02} \\ c_{0 y} \\ c_{0 z}\end{array}\right) \ldots$
Interpslate one component at a fim.

$$
\begin{array}{r}
C_{x}(t)=C_{0 x}(1-t)+C_{1 x} t \\
\bar{C}(t)=\bar{C}_{0}(1-t)+\bar{C}_{1} t
\end{array}
$$

(2) Highendegnee pohyomial blending funchias 2 (quadoriz), 3 (arbic). thigher onden is possible but never used (too wisgly)

(3) Splimes (piecenise prlynomials, stitched tigethan vitit desined contomity proputie.

\& Quehatic intupsilutin
$c_{0} \cdot c_{2}$
Shortant: Bernstein Pibmomials as blandins funatias

des	0	1		
des 1	$(1-t)$	t		
$\operatorname{des} 2$	$(1-t)^{2}$	$2(1-t) t$	t^{2}	

$$
\left.\operatorname{deg} 3 \quad \frac{(1-t)^{3} 3(1-t)^{2} t 3(1-t) t^{2}}{\operatorname{deg} n} t^{3} b_{\nu, x}(t)=\binom{n}{\nu} t^{\nu}(1-t)^{n-\nu} \right\rvert\,
$$

So quadratic imtapolatu

$$
c(t)=c_{0}(1-t)^{2}+c_{1}(2(1-t) t)+c_{2} t^{2}
$$

Letis visaalige this. All are functiv on $[0,1]$
$\operatorname{dog} 0$

constans
des 1

notice: the tro bleadions function add to 1
Technical term:
"Pantition of Units"
(Book is tuse an fhis).
Hadurto see fon hipur degre but we will maintain thir
$\log 2$

§ bezir cunves des 3 curre., specrifced by 4 control points.

