Interpolation and Approximation of functions

Dinesh K. Pai

Partly from
Textbook Chapter 9

Today

- Reminders:
- Assignment 4 is out
- Midterm 2 coming soon (March 21)
- Final exam: APR 26, 03:30 PM
- Wrap up texture mapping for now
- New topic: Interpolation and approximation
- Foundation of a lot of topics (Chapter 9), including geometric modeling (Chapter 22), animation (Chapter 23) and dealing with images (Chapters 16-18)

Assignment 4

- Available now, due March 25 (by popular demand)
- However: please make sure you do at least the first 3 parts before March 21 (midterm)
- These parts will help you understand the topics covered in class and textbook Chapter 15, which will be on the midterm
- Use the extra time after midterm for "Creative Licence". Texture mapping is particularly great for this... many of you will find this a lot of fun!

C ${ }^{3}$ Review: Texture mapping

- Which texture mapping technique would you use to put the smiley face in the scene?
a) Basic texturing
b) Projector texture mapping Environment cube maps
d) All of the above
e) None of the above

C^{3} Review: Texture mapping

- In which of the following will the resulting surface color appear to be static when the eye (camera) is moving?
a) Environment cube mapping
b) Projector texture mapping
c) Basic texture mapping
d) $B \& C$
e) All of the above

C ${ }^{3}$ Review: Texture mapping

- Can you use texture mapping along with other lighting/shading techniques?
a) Yes. Texture mapping should be done in the vertex shader, and lighting/shading should be done in the fragment shader so they don't overlap.
b) Yes. The lighting/shading effect can be added to the texture map on each fragment.
c) No. The normal from the texture is in conflict with the normal from the model
d) No. The final colour of each pixel can only be determined by one technique.

Geometry of Projector Textures

Projector texture mapping

- The slide projector is modeled using 4 by 4, modelview and projection matrices, M_{s} and P_{s}
$\left[\begin{array}{c}x_{t} w_{t} \\ y_{t} w_{t} \\ - \\ w_{t}\end{array}\right]=P_{s} M_{s}\left[\begin{array}{c}x_{o} \\ y_{o} \\ z_{o} \\ 1\end{array}\right]$

Projector texture mapping

- With the texture coordinates defined as

$$
x_{t}=\frac{x_{t} w_{t}}{w_{t}} \text { and } y_{t}=\frac{y_{t} w_{t}}{w_{t}}
$$

- To color a point on a triangle with object coordinates $\left[x_{o}, y_{o}, z_{o}, 1\right]^{t}$, we fetch the texture data stored at location $\left[x_{t}, y_{t}\right]^{t}$

Projector texture mapping

- Projector vertex shader
\#version 330
uniform mat4 uModelViewMatrix; uniform mat4 uProjMatrix;
uniform mat4 uSProjMatrix; uniform mat4 uSModelViewMatrix;

Vertex shader generates texture coordinates!
in vec4 aVertex;
out vec4 vTexCoord;
void main()\{
vTexCoord = uSProjMatrix * uSModelViewMatrix * aVertex;
gl_Position = uProjMatrix * uModelViewMatrix * aVertex;
\}

Projector texture mapping

- Projector fragment shader
\#version 330
uniform sampler2D vTexUnit0;
in vec4 aTexCoord;
out vec4 fragColor;
void main()\{ vec2 tex2; tex2.x = vTexCoord.x/vTexCoord.w; tex2.y = vTexCoord.y/vTexCoord.w; vec4 texColor0 = texture2D(vTexUnit0, tex2); fragCoor = texColor0;
\}

Inteupilation 4 Appnoximation
Mofivation:
Digital / Discecte representation of
Contionous (smooth) functions (in any dimune)
We will fours an 1D

- easier to explain
- Genvalization to highe dim are anceptually straight forewand
- Lots of applications
eg. functins of time

"inbeturnexis
now dine by amputers

Computir a ximatio "Key frame animution"

Andio

Key Questías
Dischete $\xrightarrow{\text { reconstunctim }} \xrightarrow{\text { Prterpolation is }}$ one way to do this Continuos

$$
\leftarrow_{\text {samplims }}
$$

\oint Constant (intenpslatiza)

Obvious limitations
mot Continues
may want smoother sining
waste: this is what your monitor doss! when you display an image.
§ Linear Interpolation (piecewise)

$$
c(t)=a t+b
$$

Fix boundaries

$$
\begin{aligned}
C_{0} & =a \cdot 0+b \Rightarrow b=c_{0} \\
C_{1} & =a \cdot 1+c_{0} \Rightarrow a=c_{1}-c_{0} \\
c(t) & \left.=c_{1}-c_{0}\right) t+c_{0}
\end{aligned}
$$

* Key step. reunite this

from the "blending weights" that are independent of data. Just depend an the type of interpolation.
c_{i} are called "control values"
In geneal c_{i} cam be any dimensional rector Eg. C_{i} could be the coondimates of a 3D point In common usage c_{i} are called "control point'

Next class: Gena adige to higher smoothness Bezier curves, its.

