
2014‐03‐10

1

Texture Coordinates

Dinesh K. Pai

Textbook Chapter 15

Some slides courtesy of M. Kim, KAIST

1

Today

 Reminders:
 Assignment 3 due today

 Midterm 2 coming soon (March 21)

 Assignment 4 introduction

 Cube maps

 Projector maps

2

2014‐03‐10

2

 Assignment 4 demo

3

C3 Survey

 How far along are you with Assignment 3
a) Not started

b) Can run template code

c) Finished at least one part

d) Finished all fully specified parts (1,2,3)

e) Finished everything

4

2014‐03‐10

3

C3 Survey

 Assignment 4 will be out soon (tomorrow). It is very
useful for understanding texture mapping and studying
for midterm 2 on March 21. When should we make
Assignment 4 due?
a) March 19 (2 working days before midterm)

+ makes sure you finish assignment before midterm
- many of you have lots going on in the next 2 wks

b) March 25 (2 working days after midterm)
- some may procrastinate on assignment and hence lose
learning opportunity for midterm
+ gives you more time, but … CAVEAT: don’t complain that
you didn’t do the assignment later! Please do at least parts 1-3
before midterm

5

C3 Review: Texture mapping

 In which part of the pipeline can you access
textures?
a) In the vertex shader

b) In the fragment shader

c) Both of the above

d) None of the above

2014‐03‐10

4

C3 Exercise: Texture mapping

 If the following picture corresponds to the
texture coordinates:

which picture corresponds to the following?

static GLfloat sqTex[12] = {
0, 0,
1, 1,
1, 0,

0, 0,
0, 1,
1, 1

};

static GLfloat sqTex[12] = {
0, 0,
1, 1,
1, 0,

0, 0,
1, 0,
1, 1

};

a) b) c) (d)

None of
these.
It’s an
error

More on Texture Coordinates

 Part 1 uses the texture coordinates supplied
with the model, generated using a 3rd party
program (3DS Max). Similar functions available
in Blender, Maya, and other modeling software.

 Legacy OpenGL had a function (glTexGen) to
do this, removed from current versions

 In production, coordinates designed with model
(or “painted” on 3D model)

 The next two parts show how useful texture
coordinates can often be computed in shaders

2014‐03‐10

5

Environment cube maps
 Textures can also be used to model the

environment in the distance around the object
being rendered.

 In this case, we typically use 6 square textures
representing the faces of a large cube
surrounding the scene.

9

Environment cube maps

 Each texture pixel represents the color as seen
along one direction in the environment.

 This is called a cube map. GLSL provides a
cube-texture data type, samplerCube
specifically for this purpose.

10

2014‐03‐10

6

Environment cube maps

 During the shading of a point, we can treat the
material at that point as a perfect mirror and
fetch the environment data from the appropriate
incoming direction.

11

Environment map shader

 We calculated in a previous lecture.

 This bounced vector will point points towards
the environment direction, which would be
observed in a mirrored surface.

 By looking up the cube map, using this direction,
we give the surface the appearance of a mirror.

12

B(

v)

2014‐03‐10

7

Geometry of Cube Mapping

13

Environment map shader
 Fragment shader

15

#version 330
uniform samplerCube uTexUnit0;
in vec3 vNormal;
in vec4 vPosition;
out vec4 fragColor;

vec3 reflect(vec3 w, vec3 n){
return n*(dot(w,n)*2.0) - w; // bounce vector

}

void main() {
vec3 normal = normalize(vNormal);
vec3 reflected = reflect(normalize(vec3(-vPosition)), normal);
vec4 texColor0 = textureCube(uTexUnit0, reflected);
fragColor = vec4(texColor0.r, texColor0.g, texColor0.b, 1.0);;

}

2014‐03‐10

8

Environment map shader
 -vPosition represents the view vector

 textureCube is a special GLSL function that
takes a direction vector and returns the color
stored at this direction in the cube texture map.

 Here we assume eye-coordinates, but frame
changes may be needed.

16


v

Projector texture mapping
 There are times when we wish to glue our

texture onto our triangles using a projector
model, instead of the affine gluing model.

 For example, we may wish to simulate a slide
projector illuminating some triangles in space.

17

2014‐03‐10

9

Geometry of Projector Textures

18

Projector texture mapping
 The slide projector is modeled using 4 by 4,

modelview and projection matrices,

19

Ms and Ps
xtwt

ytwt


wt





















 PsMs

xo

yo

zo

1





















2014‐03‐10

10

Projector texture mapping
 With the texture coordinates defined as

 To color a point on a triangle with object
coordinates , we fetch the texture
data stored at location

20

xt 
xtwt

wt

 and yt 
ytwt

wt

[xo, yo, zo,1]t

[xt , yt]
t

Projector texture mapping

 The three quantities are all
affine functions of . Thus these
quantities will be properly interpolated over a
triangle when implemented as varying variables.

 In the fragment shader, we need to divide by
to obtain the actual texture coordinates.

 When doing projector texture mapping, we do
not need to pass any texture coordinates as
attribute variables to our vertex shader.

21

xtwt , ytwt and wt
(xo, yo, zo)

wt

2014‐03‐10

11

Projector texture mapping

 We simply use the object coordinates already
available to us.

 We do need to pass in, using uniform variables,
the necessary projector matrices.

22

Projector texture mapping
 Projector vertex shader

23

#version 330

uniform mat4 uModelViewMatrix;
uniform mat4 uProjMatrix;

uniform mat4 uSProjMatrix;
uniform mat4 uSModelViewMatrix;

in vec4 aVertex;
out vec4 vTexCoord;

void main(){
vTexCoord = uSProjMatrix * uSModelViewMatrix * aVertex;
gl_Position = uProjMatrix * uModelViewMatrix * aVertex;

}

Vertex shader generates
texture coordinates!
But not normalized

2014‐03‐10

12

Projector texture mapping
 Projector fragment shader

24

#version 330

uniform sampler2D vTexUnit0;

in vec4 aTexCoord;
out vec4 fragColor;

void main(){
vec2 tex2;
tex2.x = vTexCoord.x/vTexCoord.w;
tex2.y = vTexCoord.y/vTexCoord.w;
vec4 texColor0 = texture2D(vTexUnit0, tex2);
fragCoor = texColor0;

}

Projector texture mapping

 Conveniently, OpenGL even gives us a special
call texture2DProj(vTexUnit0, pTexCoord), that
actually does the divide for us.

 Inconveniently, when designing our slide
projector matrix uSProjMatrix, we have to deal
with the fact that the canonical texture image
domain in OpenGL is the unit square, whose
lower left and upper right corners have
coordinates used for the
display window.

25

[0,0]t and [1,1]t

