CPSC 314 Computer Graphics

Dinesh K. Pai

Projection contd...
Midterm analysis

Today

- Announcement: Assignment 3 will be on lighting, which we will cover after reading week. But we will make the assignment available earlier, in case some of you want to get started.
- Assignment 1 spotlight
- Assignment 1 analysis
- Midterm 1 analysis
- Cameras and projections (Chapter 10 of text)

Assignment 1

- Median= 93.
- Connect has some issues, we're investigating

Histogram

Midterm 1

- You can download your exams from the link on the course web page (look for "Handback")
- Raw marks include accommodations made for this exam (ONLY)
- Very generous partial credits
- Rounded up $1 / 2$ marks for each question
- On top of this, added 3 marks (6\%) to adjust the curve

Midterm : raw scores

- Median = 33 (66\%), Max = 45 (90\%)

Midterm 1: final grade with 3 grace marks

- Median = 36 (72\%), Max = 48 (96\%)

- Frequency

Details and Pointers

- Q1. Fill in the blank
- Answer key: 5,12,9,3,2,10,13,7
- Q2 Uniform and In (most did ok)
- Uniform: same for all vertices
- In: per vertex attribute
- Q3 GLUT, GLEW, GLM
- big surprise: many had no idea
- Read L4, Textbook Appendix A

Details, contd...

- Q4 Orthonormal basis
- Read L3, Textbook p. 15. Try to be precise, esp. if question says "mathematically" or "define"
- Many forgot "normal" part
- Q5 Basic pinhole projection matrix
- Read L13 (last page), Textbook p. 91
- More general models later in the book also ok
- Q6 transformations about coord axes
- Most got these right
- Part 3: some go order wrong, but only 0.5 off (and benefit of rounding up). Some forgot to multiply.
- Part 4: notice that rotation by 0 about *any* axis = Identity

Q7 Interpret transformations

- Most got (a), and at least one part of (b).
- Got partial marks, rounded up

Q8 Knowledge Transfer (mirror)

- This is an instance of doMtoOwrtA
- Read p. 46 of book, and L12
- Plus very strong hint in L14, slide 8 to review this
- Main difference: M is now reflection, A is called S
- Details $\quad \bar{M}_{2}\left[\begin{array}{ll}1 & 1 \\ -11 \\ -1\end{array}\right]$ Later parts assumed M correct
- (b) Most got this

- (c) Many didn't, or even write symbolic answer! Just writing S M S ${ }^{-1}$ got $3 / 5$.

Projection

- Review basis pinhole project and scaling from L13 and L14
- These can be generalized to different aspect ratios and even shifting image plane

Scale factor \boldsymbol{n}

- Controlling aspect ratio of film space

$$
\left[\begin{array}{c}
x_{n} w_{n} \\
y_{n} w_{n} \\
- \\
w_{n}
\end{array}\right]=\left[\begin{array}{cccc}
-n & 0 & 0 & 0 \\
0 & -n & 0 & 0 \\
- & - & - & - \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{e} \\
y_{e} \\
z_{e} \\
1
\end{array}\right] \quad \square\left[\begin{array}{c}
x_{n} w_{n} \\
y_{n} w_{n} \\
- \\
w_{n}
\end{array}\right]=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
- & - & - & - \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{e} \\
y_{e} \\
z_{e} \\
1
\end{array}\right]
$$

