CPSC 314 Computer Graphics

Dinesh K. Pai

Projection

Today

- Exam preparation tips
- Wrap up transformations: lookAt, object rotations
- Cameras and projections (Chapter 10 of text)
- Pinhole camera model
- Projection in homogeneous coordinates
- Distinguish between
- Eye coordinates
- Clip coordinates
- Normalized device coordinates (ndc)

Exam Format

- The exam is closed book, closed electronic device (laptops, phones, etc. should be out of sight).
- 50 marks (in 50 minutes. Please be on time!)
- Three types of questions
- small questions (fill in the blank, many choices given)
"Can you recognize the concepts?"
- direct questions (write down short answer)
"Do you understand the concepts?"
- problem solving questions
"Can you use your knowledge in a new situation?"

Exam Format

- The first two question types are meant to be easy. Try to go through them quickly, so that you have time to think about the problem solving questions at the end.
- Some questions may have multiple parts that build on one another. Answer for part (a) is used in part (b), etc. Even if the answer for (a) is incorrect, you can get credit for later parts if you show your steps (i.e., later parts will be graded on the subsequent logic).

Exams will be scanned and returned electronically

Tips for manipulating matrices

- Rotations

$$
R^{-1}=R^{T}
$$

- Rigid Motions

$$
\text { if } \left.\begin{array}{rl}
M & =\left[\begin{array}{l|l}
R & t \\
0001
\end{array}\right] \\
M^{-1} & =\left[\left.\begin{array}{l|l}
R^{\top} & -R^{\top} t \\
\hline 0 & 0
\end{array} \right\rvert\,\right. \\
1
\end{array}\right]
$$

C^{3} Survey

- How far along are you with Assignment 2
a) Not started
b) Can run template code
c) Finished at least one part
d) Finished all specified parts $(1,2,3)$
e) Finished everything

C ${ }^{3}$ Homework: Viewing

- Find the view transform from world coordinates to eye coordinates, corresponding to an eye located at $(2,5,0)$, looking straight at $(10,5,0)$, both in world coordinates. Assuming y is the up direction.
- What are the world coordinates of a point whose eye coordinates are (5,3,-4)?
- What are the eye coordinates of a point whose world coordinates are (5,3,-4)?

C ${ }^{3}$ Homework: Viewing

- Find the view transform from world coordinates to eye coordinates, corresponding to an eye located at $(2,5,0)$, looking straight at $(10,5,0)$, both in world coordinates. Assuming y is the up direction.
- What are the world coordinates of a point whose eye coordinates are ($5,3,-4$)?
a) $(2,-2,5)$
d) $(-4,8,-7)$
b) $(6,8,5)$
e) None of the above
c) $(4,8,7)$

C ${ }^{3}$ Homework: Viewing

- $\underline{\tilde{e}}=\underline{\widetilde{W}}\left[\begin{array}{llll}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
- $-\tilde{e}\left[\begin{array}{c}5 \\ 3 \\ -4 \\ 1\end{array}\right]=\widetilde{\widetilde{W}}\left[\begin{array}{llll}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}5 \\ 3 \\ -4 \\ 1\end{array}\right]=\widetilde{\underline{W}}\left[\begin{array}{l}6 \\ 8 \\ 5 \\ 1\end{array}\right]$

Carmeras v lrojection

Simplest Modil: finhole Camera
An equiralent nodel:

$$
x_{c} \text { is similon }
$$

 initially assume at $z=-1$
From Similar triangls

$$
\frac{y}{z}=\frac{y_{c}}{-1}
$$

So $\left(\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right) \xrightarrow{\text { Prijat }}\left(\begin{array}{c}-x / z \\ -y / z \\ -z / z \\ 1\end{array}\right)$
usins cool fact fuom Last class

$$
=\left(\begin{array}{c}
x \\
y \\
z \\
-z
\end{array}\right)
$$

Representing Progection as a matrix.

$$
\underbrace{\left(\begin{array}{l}
x_{c} \\
y_{e} \\
z_{c} \\
z_{2}
\end{array}\right)}=\underbrace{\left[\begin{array}{lll|l}
1 & & & 0 \\
& 1 & & 0 \\
0 & & 1 & 0 \\
\hline 0 & 0 & -1 & 0
\end{array}\right]}\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

$\sim \sim$ ene coondinates of a point
Clip The basic Projection Matrix (A) condinates p

Lg. Il_position in vertex shader
In a typical Oputh applicutia

$$
\begin{gathered}
\text { Model-View-Projectim ratrix } \\
0
\end{gathered}
$$

$$
\text { gl-position }=\text { PMj } * V \text { iew } * \text { Molel } \times C
$$

$$
=P E^{-1} 0 c
$$

