CPSC 314 Computer Graphics

Dinesh K. Pai
Transforms and Cameras

Today

- Exam preparation tips
- Wrap up transformations: lookAt, object rotations
- Cameras and projections (start reading Chapter 10 of text)

Exam Preparation

- Review lecture notes, and assignments
- Textbook. Read ALL of these, except as noted
- Ch 1
- Ch 2: skip Eq. 2.5
- Ch 3: 3.6 is optional
- Ch 4
- Ch 5: 5.4 is optional
- Ch 10
=-Ch 11: skip 11.2.1, 11.4. Review this chapter last, since it's unclear how much we'll cover. Skip for midterm 1

More resources for understanding transformation matrices

- There are several on the web (just google). E.g.
- http://user.xmission.com/~nate/tutors.html

An old but still useful one. Uses legacy OpenGL

- A more recent one
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

A closer look at "lookAt"

- Book description in 5.2.3 has a bug, fixed in online Errata (make this and other corrections in your textbook copy)
- $z=$ normalize $(p-q)$
$\mathrm{x}=$ normalize $(\mathrm{u} \times \mathrm{z})$ $y=(z \times x)$

A closer look at "lookAt"

C ${ }^{3}$ Homework: Viewing

- Find the view transform from world coordinates to eye coordinates, corresponding to an eye located at $(2,5,0)$, looking straight at $(10,5,0)$, both in world coordinates. Assuming y is the up direction.
- What are the world coordinates of a point whose eye coordinates are ($5,3,-4$)?
- What are the eye coordinates of a point whose world coordinates are (5,3,-4)?
\$ How to transfom points w.n.t. an auxiliany frame?
$\begin{aligned} & =\tilde{a} \bar{A}^{+} \bar{O} \bar{p} \\ \text { Transfimed } & =\tilde{p}=-1\end{aligned}$
I Notation simplification assure

$$
=\underset{\sim}{\omega} \overline{0} \bar{p}
$$

$$
=\underline{a} \bar{A}^{\lambda} \bar{O} \bar{p}
$$

$\operatorname{lon}_{\text {corse }} p, q$ eth. are \bar{p}, \bar{q}
upp O, O, T etze we $\bar{O} T$
\oint A cnucial ider about homogeneone cuindinatee In 1D
tomozenerna coonds

Points / Eachidean'pare vecton space

$$
\begin{aligned}
& \int_{\sim}^{\hat{p}} \underset{\sim}{a}=\hat{w} A \\
& \leftrightarrow \tilde{0}=\tilde{\omega} 0 \\
& \text { Object srame } \\
& \text { Suppise we now } \\
& \text { wanct a transfics } \\
& M+\text { hap pm } \\
& \text { relatire to } n
\end{aligned}
$$

we assume $\binom{x}{w} \equiv\binom{x / w}{1}$ for all $w \neq 0$
\uparrow
normalized form
So all coonds.alomg a nay from origin in homogeneous coordinates ("4D") represent same physical point (in" $3 D^{\prime}$)

We will use this to simplify projection.

