CPSC 314
 Computer Graphics

Dinesh K. Pai

Frames in OpenGL, GLM

Announcements

- Assignment 2 now out.
- Start preparation for Midterm 1
- Resources for help
- Re-read your notes, lecture notes, and textbook now
- Prof. Pai's regular office hour (ICICS X853): W 3-4 (from next week)
- Extra office hour: Thursday Feb 6, 11-11:50. Don't wait till the last minute! May have to go to hospital at short notice!
- TAs can also help with theory during lab hours! You can drop in on any of the labs.

Assignment 2 demo

C^{3} : Moving an Object

- The output on the screen corresponds to

$$
O=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\vec{o}^{t}=\vec{w}^{t} O
$$

- Which of the following outputs corresponds to

$$
O=\left[\begin{array}{cccc}
\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} & 0 & 0 \\
\sin \frac{\pi}{4} & \cos \frac{\pi}{4} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

a)

b)

d)

GLM revisited

- Recall: implements GLSL math functions in C++
- Also includes utilities to create transformation matrices deprecated in new OpenGL
- glm::rotate
- glm::lookAt
- glm::perspective
- \#include <glm/gtc/matrix_transform.hpp> to use
- Pass matrix to shader using glm::value_ptr

A closer look at "lookAt"

- Book description in 5.2.3 has a bug, fixed in online Errata (make this and other corrections in your textbook copy)
- z = normalize(p -q)
$x=$ normalize $(u \times z)$
$y=(z \times x)$

C ${ }^{3}$ Exercise: Transformation

- Compute the transformation matrix that creates the following motion, all wrt the World frame. Rotate a point around the z axis by 90 degrees, and then scale the coordinates by $1 / 2$ in all directions, and then translate by (2, 1, 3).

\mathbf{C}^{3} Exercise: Transformation

- Compute the transformation matrix that creates the following motion, all wrt the World frame. Rotate a point around the z axis by 90 degrees, and then scale the coordinates by $1 / 2$ in all directions, and then translate by
a) $\left[\begin{array}{cccc}(2,1,3) . \\ 0 & -0.5 & 0 & 2 \\ 0.5 & 0 & 0 & 1 \\ 0 & 0 & 0.5 & 3 \\ 0 & 0 & 0 & 1\end{array}\right]$
c) $\left[\begin{array}{cccc}0 & -0.5 & 0 & -0.5 \\ 0.5 & 0 & 0 & 1 \\ 0 & 0 & 0.5 & 1.5 \\ 0 & 0 & 0 & 1\end{array}\right]$
b) $\left[\begin{array}{cccc}0 & -0.5 & 0 & 1 \\ 0.5 & 0 & 0 & 0.5 \\ 0 & 0 & 0.5 & 1.5 \\ 0 & 0 & 0 & 1\end{array}\right]$
d) $\left[\begin{array}{cccc}0.5 & 0 & 0 & 1 \\ 0 & -0.5 & 0 & 0.5 \\ 0 & 0 & 0.5 & 1.5 \\ 0 & 0 & 0 & 1\end{array}\right]$
e) None of the above

