CPSC 314 Computer Graphics

Dinesh K. Pai

Frames and their uses

Announcements

- Assignment 2 will be out soon (probably late today).
- Reminder: Midterm 1 on Feb 7, in class.
- Assignment 2 deadline pushed to Feb 10 to provide some flexibility... but I strongly recommend finishing it before the midterm, to gain better understanding of transformations
- Assignment 2 grading will be Feb 11-14.

C³Homework:
 Basis and Transformation

- What are the coordinates of point P in frame A, B, and C ?
- Which frame is orthonormal?
- How to transform a point from frame C to frame B ?

Frames
\oint Suppure \mathfrak{a} is defined unt. \tilde{b}

$$
\begin{gathered}
\underline{\tilde{a}}=\underline{\tilde{b}} \underline{\bar{A}}_{k_{i m p u t}} \\
\tilde{p}=\tilde{a}^{p_{p}}=\tilde{p}_{a} \bar{p}_{b}
\end{gathered}
$$

viul(2) a meviferame
vicul(2)

$$
\overbrace{\tilde{b} \bar{A}}^{\underline{a}} \bar{p}_{a}=\tilde{b} \bar{p}_{b}
$$

viw(1) I moved \hat{p}_{a}

$$
\text { by } \bar{A}
$$

§ 2 ways to interpret a matrix-vectur multiplic a "new x "functim
$j \quad \begin{aligned} & x \\ & y^{\prime} \\ & y^{\prime} \\ & 1\end{aligned}=\left[\begin{array}{l}\cdots \\ \cdots \\ 0\end{array}\right]$
a row produces a number on LHS.

$$
j^{v^{3}} /
$$

$$
\left[\left[\begin{array}{cc}
- \\
\cdot & \cdot \\
\cdot & \cdot \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1 \\
1
\end{array}\right]\right.
$$

a columm is "a nes intenpetation of $x^{\prime \prime}$ now x-axis

If A is a matrix that defines a news frame \underline{a} in tums of an $\underline{\underline{\mu}}$ frame $\underline{\tilde{b}}$, ie. $\underline{\hat{a}}=\underline{\tilde{b}} A$
A the first columanhas the coonds of new frame's X-axis in the old frame

Similarly send column is Y-axis, Nb.

§ Typical Uses of Frames (Chapter 5)
World $\tilde{\omega}$ Evesthing else defined w.n.t. थ̈
synonyms: Scene
Object $\quad \underline{0}=\underline{W} \bar{O}$ Fixed h object synonyon: Modeling frame
Eye $\quad \underline{e}=\tilde{w} \underline{E}$ fixed to ese/camera Synonym: View frame, Camus

$$
\begin{aligned}
& \tilde{p}=\underline{\hat{0}} \bar{p}_{0}=\underline{w} \bar{O} \bar{P}_{0}=\underline{w} \bar{E} \bar{P}_{e}=\tilde{e} \bar{p}_{k} \\
& \rightarrow \text { ? } \rightarrow= \\
& \bar{P}_{e}=\underline{E}^{\bar{E}^{-1} \bar{O}} \bar{P}_{0} \\
& \text { Model virus Matrix }
\end{aligned}
$$

