CPSC 314 2013W T2 Review 3

Solution. Prepared by Edwin Chen

April 22, 2014

Please also take a look at the earlier review questions available on the course resources page.

Projector Texture Mapping

A projector is at $(5,3,3)$ looking at $(5,3,-3)$. The near plane is at $z=2$. The left and right of the rectangle in the eye frame are at $x=-1$ and $x=1$. The top and bottom of the rectangle are at $y=2$ and $y=-2$. Construct the model-view matrix and the projection matrix. If the texture in Figure 1 to be projected is shown in the picture, what is the colour to be projected on the point at $(9,4,-10)$?

Figure 1
Model-view matrix in this case transforms world to projector frame:
$\left[\begin{array}{cccc}1 & 0 & 0 & -5 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1\end{array}\right]$

Projection matrix (from (10.7) in the textbook):

Notice the near plane is at $z_{e}=2-3=-1$ in the projector frame.

$$
\left[\begin{array}{cccc}
-\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & -\frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\
- & - & - & - \\
0 & 0 & -1 & 0
\end{array}\right]=\left[\begin{array}{cccc}
\frac{2}{2} & 0 & 0 & 0 \\
0 & \frac{2}{4} & 0 & 0 \\
- & - & - & - \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Coordinates on the near plane projected on $(9,4,-10)$:
$\left[\begin{array}{cccc}\frac{2}{2} & 0 & 0 & 0 \\ 0 & \frac{2}{4} & 0 & 0 \\ - & - & - & - \\ 0 & 0 & -1 & 0\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & -5 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}9 \\ 4 \\ -10 \\ 1\end{array}\right]=\left[\begin{array}{c}4 \\ \frac{1}{2} \\ - \\ 13\end{array}\right]$
clip coordinates $=\frac{1}{13}\left(4, \frac{1}{2}\right)=\left(\frac{4}{13}, \frac{1}{26}\right)$
\Rightarrow projected colour is yellow

Interpolation

The control points for a Bézier curve are: $C_{0}=(0,0,0), C_{1}=(2,5,3), C_{2}=$ $(5,1,3), C_{3}=(0,2,3)$. What is the point at $t=0.5$?
$p=(1-0.5)^{3} C_{0}+3 \cdot 0.5(1-0.5)^{2} C_{1}+3 \cdot 0.5^{2}(1-0.5) C_{2}+0.5^{3} C_{3}=$ (2.625, 2.5, 2.625)

Depth

The near plane is at $z=-5$, the far plane is at $z=-20$, the top, bottom, left and right of the near plane are at $y=6, y=-6, x=-10, x=10$. Construct the projection matrix. What are the clip coordinates of the points $P_{1}=(2,2,-6)$, and $P_{2}=(3,3,-15)$? What is the depth value that would be stored in the depth buffer, for each point?

From (11.2) in the textbook: $\left[\begin{array}{cccc}-\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & -\frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & \frac{f+n}{f-n} & -\frac{2 f n}{f-n} \\ 0 & 0 & -1 & 0\end{array}\right]=\left[\begin{array}{cccc}\frac{10}{20} & 0 & 0 & 0 \\ 0 & \frac{10}{12} & 0 & 0 \\ 0 & 0 & \frac{-25}{-15} & \frac{200}{15} \\ 0 & 0 & -1 & 0\end{array}\right]$
clip coordinates of $P_{1}:\left[\begin{array}{cccc}\frac{10}{20} & 0 & 0 & 0 \\ 0 & \frac{10}{12} & 0 & 0 \\ 0 & 0 & \frac{-25}{-15} & \frac{200}{15} \\ 0 & 0 & -1 & 0\end{array}\right]\left[\begin{array}{c}2 \\ 2 \\ -6 \\ 1\end{array}\right]=\left[\begin{array}{c}1 \\ 5 / 3 \\ 10 / 3 \\ 6\end{array}\right]$
normalized device coordinates of $P_{1}: \frac{1}{6}\left(1, \frac{5}{3}\right)=\left(\frac{1}{6}, \frac{5}{18}\right)$, Depth: $\frac{1}{6} \cdot \frac{10}{3}=\frac{10}{18}$
clip coordinates of $P_{2}:\left[\begin{array}{cccc}\frac{10}{20} & 0 & 0 & 0 \\ 0 & \frac{10}{12} & 0 & 0 \\ 0 & 0 & \frac{-25}{-15} & \frac{200}{15} \\ 0 & 0 & -1 & 0\end{array}\right]\left[\begin{array}{c}3 \\ 3 \\ -15 \\ 1\end{array}\right]=\left[\begin{array}{c}3 / 2 \\ 5 / 2 \\ -35 / 3 \\ 15\end{array}\right]$
normalized device coordinates of $P_{2}: \frac{1}{15}\left(\frac{3}{2}, \frac{5}{2}\right)=\left(\frac{1}{10}, \frac{1}{6}\right)$, Depth: $\frac{1}{15} \cdot \frac{-35}{3}=$ $-\frac{7}{9}$

Sampling

A single fragment is shown in Figure 2, along with the colours from a texture image that would map on to it. Suppose we use over-sampling at points $P_{1}=$ $(0.4,0.6), P_{2}=(0.3,0.3), P_{3}=(0.2,0.7)$, what is the output colour? What if the sampling points are 9 points on a 3 by 3 grid at $x=0.25,0.5,0.75$, and $y=0.25,0.5,0.75$? Assume the colours for red, green, blue are $(1,0,0),(0,1,0)$, $(0,0,1)$ respectively.

Figure 2
(a)

Colour at $P_{1}=$ blue $=(0,0,1)$
Colour at $P_{2}=$ blue $=(0,0,1)$
Colour at $P_{3}=$ green $=(0,1,0)$
\Rightarrow Sampled colour $=\frac{1}{3}(0,0,1)+\frac{1}{3}(0,0,1)+\frac{1}{3}(0,1,0)=\left(0, \frac{1}{3}, \frac{2}{3}\right)$
(b)

Sampled colours: 2 blue, 3 red, and 4 green
\Rightarrow Sampled colour $=\frac{2}{9}(0,0,1)+\frac{1}{3}(1,0,0)+\frac{4}{9}(0,1,0)=\left(\frac{1}{3}, \frac{4}{9}, \frac{2}{9}\right)$

Compositing

On a completely opaque black background, with colour ($0,0,0,1$), we draw a foreground fragment with the colour $(1,1,1,0.7)$ i.e. white with alpha value 0.7 . What is the output colour of the pixel?

Note: the question was a bit ambiguous about whether the colours were "premultiplied" or not. If nothing is mentioned, assume that the colours "premultiplied" by the α value.

In this case we have our foreground colour $I^{f}=(1,1,1)$, and the background colour $I^{b}=(0,0,0)$

From (16.4) in the textbook (for premultiplied colour):
$I^{c}=I^{f}+I^{b}\left(1-\alpha^{f}\right)=(1,1,1)+0.3(0,0,0)=(1,1,1)$
with the alpha channel
$\alpha^{c}=\alpha^{f}+\alpha^{b}\left(1-\alpha^{f}\right)=0.7+1 \cdot 0.3=1$
Output colour: $(1,1,1,1)$
If you thought this was strange, it's because you may have been expecting the color to be non-premultiplied (see Section 16.4.2). If you use the formula in that section, you will get

Output colour: $(0.7,0.7,0.7,1)$

Bilinear interpolation

If the value at $\mathrm{P} 1=(1,1)$ is $0, \mathrm{P} 2=(2,1)$ is $1, \mathrm{P} 3=(2,2)$ is $1, \mathrm{P} 4=(1,2)$ is 1. What is the bilinearly interpolated value at $\mathrm{P} 5=(1.5,1.5)$? What if P5 was $(1.25,1.75) ?$ What if the value at P 3 is 2 ?

Figure 3
For $P_{5}=(1.5,1.5)$, the value at P_{5} is the average over the 4 points.
If the value at P_{3} is 1 , the value at P_{5} is $\frac{0}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}$
If the value at P_{3} is 2 , the value at P_{5} is $\frac{0}{4}+\frac{1}{4}+\frac{2}{4}+\frac{1}{4}=1$
In a more general situation when $P_{5}=(1.25,1.75)$, without easy symmetry, you interpolate along one direction (say X) and then in the other direction (Y). If the value at point P_{i} is denoted V_{i} the value at P_{5}, then

$$
V_{5}=\left(V_{1} * \frac{3}{4}+V_{2} * \frac{1}{4}\right) * \frac{1}{4}+\left(V_{4} * \frac{3}{4}+V_{3} * \frac{1}{4}\right) * \frac{3}{4}
$$

If $V_{3}=1$, then $V_{5}=\frac{13}{16}$.
If $V_{3}=2$, then $V_{5}=1$.
Another way to do this is to see that the value V_{5} is the weighted average of the 4 values. The weights are determined by the area of the rectangles.

Area of the rectangle with diagonal $\overline{P_{1} P_{5}}$ is $0.25 \cdot 0.75=\frac{3}{16}$
Area of the rectangle with diagonal $\overline{P_{2} P_{5}}$ is $0.75 \cdot 0.75=\frac{9}{16}$

Area of the rectangle with diagonal $\overline{P_{3} P_{5}}$ is $0.75 \cdot 0.25=\frac{3}{16}$
Area of the rectangle with diagonal $\overline{P_{4} P_{5}}$ is $0.25 \cdot 0.25=\frac{1}{16}$
The weights are applied to the value on the opposite vertex:
If the value at P_{3} is 1 , the value at P_{5} is $\frac{3}{16} \cdot 0+\frac{1}{16} \cdot 1+\frac{3}{16} \cdot 1+\frac{9}{16} \cdot 1=\frac{13}{16}$
If the value at P_{3} is 2 , the value at P_{5} is $\frac{3}{16} \cdot 0+\frac{1}{16} \cdot 1+\frac{3}{16} \cdot 2+\frac{9}{16} \cdot 1=1$

Assignment Related Questions

1. What does the following line of code do?
```
glUniform3fv(glGetUniformLocation(w_state->getCurrentProgram(), "gem_pos"),
    1, glm::value_ptr(gem_position));
```

Uniform variables are used to communicate between shaders and the application program.
This function call sets the value of a uniform variable in the shader called gem_pos, to the value of the GLM vec3 variable gem_position.
2. In assignment 1, we asked you to deform the armadillo by the following scheme: If a given vertex of the armadillo is within gem_radius of gem_position, translate it along the vector between it and the gem until it lies on the surface of the sphere. You are given the following:

```
vec4 Position;
uniform vec4 gem_position;
uniform float gem_radius;
```

Fill in the important pieces of the vertex shader below:

```
//...
int main()
{
    vec4 dGem = Position - gem_position;
    if (length(dGem) < gem_radius)
            Position = gem_position + normalize(dGem)*gem_radius;
}
//...
```

