
CPSC 314 2013W T2 Review 3
Solution. Prepared by Edwin Chen

April 22, 2014

Please also take a look at the earlier review questions available on the course
resources page.

Projector Texture Mapping

A projector is at (5, 3, 3) looking at (5, 3,−3). The near plane is at z = 2.
The left and right of the rectangle in the eye frame are at x = −1 and x = 1.
The top and bottom of the rectangle are at y = 2 and y = −2. Construct the
model-view matrix and the projection matrix. If the texture in Figure 1 to be
projected is shown in the picture, what is the colour to be projected on the
point at (9, 4,−10)?

Figure 1

Model-view matrix in this case transforms world to projector frame:
1 0 0 −5
0 1 0 −3
0 0 1 −3
0 0 0 1

Projection matrix (from (10.7) in the textbook):

1

Notice the near plane is at ze = 2− 3 = −1 in the projector frame.
− 2n

r−l 0 r+l
r−l 0

0 − 2n
t−b

t+b
t−b 0

− − − −
0 0 −1 0

 =

2
2 0 0 0
0 2

4 0 0
− − − −
0 0 −1 0

Coordinates on the near plane projected on (9, 4,−10) :

2
2 0 0 0
0 2

4 0 0
− − − −
0 0 −1 0

1 0 0 −5
0 1 0 −3
0 0 1 −3
0 0 0 1

9
4
−10
1

 =

4
1
2
−
13

clip coordinates = 1

13 (4,
1
2) = (4

13 ,
1
26)

⇒projected colour is yellow

Interpolation

The control points for a Bézier curve are: C0 = (0, 0, 0), C1 = (2, 5, 3), C2 =
(5, 1, 3), C3 = (0, 2, 3). What is the point at t = 0.5?

p = (1 − 0.5)3C0 + 3 · 0.5(1 − 0.5)2C1 + 3 · 0.52(1 − 0.5)C2 + 0.53C3 =
(2.625, 2.5, 2.625)

Depth

The near plane is at z = −5, the far plane is at z = −20, the top, bottom,
left and right of the near plane are at y = 6, y = −6, x = −10, x = 10.
Construct the projection matrix. What are the clip coordinates of the points
P1 = (2, 2,−6), and P2 = (3, 3,−15)? What is the depth value that would be
stored in the depth bu�er, for each point?

From (11.2) in the textbook:

− 2n

r−l 0 r+l
r−l 0

0 − 2n
t−b

t+b
t−b 0

0 0 f+n
f−n − 2fn

f−n

0 0 −1 0

 =

10
20 0 0 0
0 10

12 0 0
0 0 −25

−15
200
15

0 0 −1 0

clip coordinates of P1:

10
20 0 0 0
0 10

12 0 0
0 0 −25

−15
200
15

0 0 −1 0

2
2
−6
1

 =

1
5/3
10/3
6

normalized device coordinates of P1 : 16 (1,

5
3) = (16 ,

5
18), Depth:

1
6 ·

10
3 = 10

18

clip coordinates of P2:

10
20 0 0 0
0 10

12 0 0
0 0 −25

−15
200
15

0 0 −1 0

3
3
−15
1

 =

3/2
5/2
−35/3
15

normalized device coordinates of P2 : 1

15 (
3
2 ,

5
2) = (1

10 ,
1
6), Depth:

1
15 ·

−35
3 =

− 7
9

2

Sampling

A single fragment is shown in Figure 2, along with the colours from a texture
image that would map on to it. Suppose we use over-sampling at points P1 =
(0.4, 0.6), P2 = (0.3, 0.3), P3 = (0.2, 0.7), what is the output colour? What if
the sampling points are 9 points on a 3 by 3 grid at x = 0.25, 0.5, 0.75, and
y = 0.25, 0.5, 0.75? Assume the colours for red, green, blue are (1, 0, 0), (0, 1, 0),
(0, 0, 1) respectively.

Figure 2

(a)
Colour at P1 = blue = (0, 0, 1)
Colour at P2 = blue = (0, 0, 1)
Colour at P3 = green = (0, 1, 0)
⇒Sampled colour = 1

3 (0, 0, 1) +
1
3 (0, 0, 1) +

1
3 (0, 1, 0) = (0, 13 ,

2
3)

(b)
Sampled colours: 2 blue, 3 red, and 4 green
⇒Sampled colour = 2

9 (0, 0, 1) +
1
3 (1, 0, 0) +

4
9 (0, 1, 0) = (13 ,

4
9 ,

2
9)

Compositing

On a completely opaque black background, with colour (0,0,0,1), we draw a
foreground fragment with the colour (1,1,1,0.7) i.e. white with alpha value 0.7.
What is the output colour of the pixel?

Note: the question was a bit ambiguous about whether the colours were
�premultiplied� or not. If nothing is mentioned, assume that the colours �pre-
multiplied� by the α value.

In this case we have our foreground colour If = (1, 1, 1), and the background
colour Ib = (0, 0, 0)

3

From (16.4) in the textbook (for premultiplied colour):
Ic = If + Ib(1− αf) = (1, 1, 1) + 0.3(0, 0, 0) = (1, 1, 1)
with the alpha channel
αc = αf + αb(1− αf) = 0.7 + 1 · 0.3 = 1
Output colour: (1, 1, 1, 1)
If you thought this was strange, it's because you may have been expecting

the color to be non-premultiplied (see Section 16.4.2). If you use the formula in
that section, you will get

Output colour: (0.7, 0.7, 0.7, 1)

Bilinear interpolation

If the value at P1 = (1,1) is 0, P2 = (2,1) is 1, P3 = (2,2) is 1, P4 = (1,2) is
1. What is the bilinearly interpolated value at P5 = (1.5,1.5)? What if P5 was
(1.25,1.75)? What if the value at P3 is 2?

Figure 3

For P5 = (1.5, 1.5), the value at P5 is the average over the 4 points.
If the value at P3 is 1, the value at P5 is 0

4 + 1
4 + 1

4 + 1
4 = 3

4
If the value at P3 is 2, the value at P5 is 0

4 + 1
4 + 2

4 + 1
4 = 1

In a more general situation when P5 = (1.25, 1.75), without easy symmetry,
you interpolate along one direction (say X) and then in the other direction (Y).
If the value at point Pi is denoted Vi the value at P5, then

V5 = (V1 ∗
3

4
+ V2 ∗

1

4
) ∗ 1

4
+ (V4 ∗

3

4
+ V3 ∗

1

4
) ∗ 3

4

If V3 = 1, then V5 = 13
16 .

If V3 = 2, then V5 = 1.
Another way to do this is to see that the value V5 is the weighted average of

the 4 values. The weights are determined by the area of the rectangles.
Area of the rectangle with diagonal P1P5 is 0.25 · 0.75 = 3

16

Area of the rectangle with diagonal P2P5 is 0.75 · 0.75 = 9
16

4

Area of the rectangle with diagonal P3P5 is 0.75 · 0.25 = 3
16

Area of the rectangle with diagonal P4P5 is 0.25 · 0.25 = 1
16

The weights are applied to the value on the opposite vertex:
If the value at P3 is 1, the value at P5 is 3

16 · 0 +
1
16 · 1 +

3
16 · 1 +

9
16 · 1 = 13

16
If the value at P3 is 2, the value at P5 is 3

16 · 0 +
1
16 · 1 +

3
16 · 2 +

9
16 · 1 = 1

Assignment Related Questions

1. What does the following line of code do?

glUniform3fv(glGetUniformLocation(w_state->getCurrentProgram(), "gem_pos"),

1, glm::value_ptr(gem_position));

Uniform variables are used to communicate between shaders and the ap-
plication program.

This function call sets the value of a uniform variable in the shader called
gem_pos, to the value of the GLM vec3 variable gem_position.

2. In assignment 1, we asked you to deform the armadillo by the follow-
ing scheme: If a given vertex of the armadillo is within gem_radius of
gem_position, translate it along the vector between it and the gem until
it lies on the surface of the sphere. You are given the following:

vec4 Position;

uniform vec4 gem_position;

uniform float gem_radius;

Fill in the important pieces of the vertex shader below:

//...

int main()

{

vec4 dGem = Position - gem_position;

if (length(dGem) < gem_radius)

Position = gem_position + normalize(dGem)*gem_radius;

}

//...

5

