CPSC 314	Midterm Exam	2012 March 16
Name:	Student ID:	

1) Describe how to test if a ray with origin \vec{x}_0 and direction \vec{d} intersects an infinite cylinder centred on the *y*-axis with radius 1.

2) Which is faster, and why: raytracing or rasterizing a single triangle?

3) Explain a problem that can happen with shading a triangle mesh if smoothly interpolated normal vectors are used.

CPSC 314	Midterm Exam	2012 March 16		
Name:	Student ID:			
4) What is an effect that pathtracing approximates which regular raytracing (like assignment 3) cannot?				

5) Describe how to incorporate shadows into a matte shader using ray tracing.

6) Why is clipping of some sort necessary for the Z-buffer algorithm when used with perspective projection via 4×4 matrices and homogeneous coordinates?

CPSC 314 Midterm Exam		2012 March 16		
Name:	Student ID:			
7) Describe how to test if two points, \vec{p} and \vec{q} , are on the same or different sides of the plane containing				
a triangle with vertices \vec{x}_0, \vec{x}_1 , and \vec{x}_2				

8) Given n points stored in a BVH of spheres, develop an efficient algorithm for finding the closest point to the origin.